University of Manchester Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
Anglia Ruskin University Featured PhD Programmes
King’s College London Featured PhD Programmes
University of Reading Featured PhD Programmes

Human Action Recognition using Machine Learning and Multimodal Data

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr JC Nebel
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

With the increased availability of video and depth sensors, such as Xbox Microsoft Kinect, the automated analysis of human activity has now become an essential area of research in machine learning. Applications for such technology include visual surveillance, sports analysis, gaming and human-computer interactions. Variability in human shape, appearance, posture and individual style in performing motions makes the unified description of a given action difficult. In addition, sensor position, perspective, scene environment and operational conditions have a critical impact on the quality of recorded data. Given the complexity of the task, accurate automatic action recognition is currently restricted to a limited number of actions performed in very controlled environments. Deployment of such technology in real-world applications requires addressing many challenges including real-time constraints, data heterogeneity, noise and incompleteness.

Since it has been observed that most human activities can be described by intrinsically low dimensional data lying in a very high dimensional space [1], the last 15 years has seen the development of a diversity of manifold-based machine learning algorithms. Based on mathematically sound models, they have aimed at not only reducing in a nonlinear manner data dimensionality to make computations easier, but also normalising heterogeneous data in a common framework, reducing noise and biases. Although recently those techniques have been applied to visual surveillance data with very promising results [2-4], they are not yet operationally ready due to under-constrained data structure representations and insufficient removal of noise and bias.

The aim of this project is to design and implement the next generation of manifold-based learning algorithms able to handle the rich but noisy data generated by real-time multimodal surveillance systems. Successful completion of the project requires addressing the following scientific objectives:
1. Manifold construction constrained by neighbourhood graphs based on global optimisation processes integrating meta-data and training data bias
2. Hierarchical manifold learning including noise removal by taking advantage of the ‘two-manifold solution’
3. Incremental manifold learning appropriate to continuous data streaming

Applicants should have, at least, an Honours Degree at 2.1 or above (or equivalent) in Computer Science or related disciplines. In addition, they should have excellent programming skills in Matlab, Java and/or C++ and fundamental knowledge of machine learning.

Qualified applicants are strongly encouraged to informally contact the supervising academic, Dr Nebel ([email protected]), to discuss the application. More on Dr Nebel’s research group and activities can be found on his personal website:

Funding Notes

No funding is available - only self-funded applications can be considered


[1] Lewandowski M., Makris D., Nebel J.-C. (2010) View and Style-Independent Action Manifolds for Human Activity Recognition, European Conference on Computer Vision (ECCV 2010),
[2] Lewandowski M., Makris D., Velastin S.A., Nebel J.-C. (2014) Structural Laplacian Eigenmaps for Modeling Sets of Multivariate Sequences, IEEE Trans. Cybernetics, 44(6):936-949
[3] Martinez-del-Rincon J., Lewandowski M., Nebel J.-C., Makris D. (2014) Generalized Laplacian Eigenmaps for Modeling and Tracking Human Motions, IEEE Trans. Cybernetics, 44(9):1646-1660
[4] Moutzouris A., Martinez-del-Rincon J., Nebel J.-C., Makris D. (2015) Efficient tracking of human poses using a manifold hierarchy, Computer Vision and Image Understanding, 132:75-86

How good is research at Kingston University in Computer Science and Informatics?

FTE Category A staff submitted: 10.20

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2019
All rights reserved.