Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

London School of Hygiene & Tropical Medicine Featured PhD Programmes
Imperial College London Featured PhD Programmes
King’s College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University College London Featured PhD Programmes

Hybrid system models and control: putting together the pieces of the energy jigsaw

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The planned expansion of the different national energy-related systems (generation, transportation, distribution, transformation) and the production of electricity from renewable sources entail significant challenges due to the unique characteristics of the sector worldwide. The dynamics of energy networks (including renewable generation sources) are highly nonlinear, combine continuous and discrete, smooth and abrupt dynamics, and are subject to discontinuous operation and a wide range of external impacts. Under this scenario, there is a need to analyse the structural vulnerability of the energy network and recommend ways to maintain its robustness despite contingencies (for example, changes in the supply, imbalances between generation and load, random equipment failures, and targeted attacks or damage to the infrastructure).

The aim of this research is to model and analyse different scenarios in complex energy grids, with the ultimate goal of identifying behaviour patterns that degrade the performance of the entire network. The theoretical framework to use is that of hybrid systems, which brings together dynamical analysis tools, control engineering methods and computational models (mainly, hybrid automata). Since one of the purposes is to automate as much as possible the decision-making and monitoring processes, advanced monitoring systems can be derived from formal verification techniques, and used in order to test the performance of the network, and, if necessary to modify its behaviour or topology to meet desired specifications. Contributions of this project are envisaged as mainly theoretical, and key scenarios will be simulated. This work will be a stepping stone for future research in large-scale distribution networks. This research would be part of the project DYVERSE (DYnamical-driven VERification of Systems with Energy considerations).

Funding Notes

This research project is one of a number of projects at this institution. It is in competition for funding with one or more of these projects. Usually the project which receives the best applicant will be awarded the funding. The funding is available to citizens of a number of European countries (including the UK). In most cases this will include all EU nationals. However full funding may not be available to all applicants and you should read the full department and project details for further information.

References

Supervisor's Webpage http://staff.cs.manchester.ac.uk/~navarroe/

How good is research at University of Manchester in Computer Science and Informatics?

FTE Category A staff submitted: 44.86

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.