Looking to list your PhD opportunities? Log in here.
About the Project
The induction of immune responses to tumours can provide long-lasting protection from cancer. In this regard, T cells can suppress tumour growth by directly killing cancer cells and by producing inflammatory cytokines. Furthermore, advances in immunotherapy have shown the adoptive cell transfer (ACT) of tumour-reactive T cells to be a successful approach to the treatment of cancer. However, in many individuals the T cell response to cancer is ineffective. It has become apparent that the processes of T cell activation and differentiation are linked to the regulation of basic metabolic pathways. These pathways provide energy required for growth, proliferation and effector functions. Dysregulation of cellular metabolism has been linked to the failure of anti-tumour T cell responses. Therefore, a greater understanding of the key pathways and regulators of T cell metabolism has the potential to define new therapeutic targets and approaches to manipulate T cell responses in the clinic. The primary supervisor’s research team has determined that a mitochondrial metabolic enzyme, PEPCK2, plays an important role in the differentiation and effector function of inflammatory CD8+ and CD4+ T cells.
Objectives:
This project will build upon initial findings to:
- Determine the impact of pharmacological and genetic inhibition of PEPCK2, and the related PEPCK1, on mouse T cell activation, differentiation and effector function
- Investigate the role of PEPCKs in T cell metabolism
- Determine how manipulation of PEPCK2 expression might be harnessed to improve the efficacy of anti-tumour T cell responses using in vivo mouse models
This project is available as part of the International PhD Academy: Medical Research
Eligibility:
You should hold a first degree equivalent to at least a UK upper second class honours degree in a relevant subject.
Candidates whose first language is not English must provide evidence that their English language is sufficient to meet the specific demands of their study. The Faculty of Medicine and Health minimum requirements are:
- British Council IELTS - score of 7.0 overall, with no element less than 6.5
- TOEFL iBT - overall score of 100 with the listening and reading element no less than 22, writing element no less than 23 and the speaking element no less than 24.
How to apply:
Applications can be made at any time. To apply for this project applicants should complete an online application form and attach the following documentation to support their application.
- a full academic CV
- degree certificate and transcripts of marks
- Evidence that you meet the University's minimum English language requirements (if applicable)
To help us identify that you are applying for this project please ensure you provide the following information on your application form;
- Select PhD in Medicine, Health and Human Disease as your programme of study
- Give the full project title and name the supervisors listed in this advert
Any queries regarding the application process should be directed to fmhpgradmissions@leeds.ac.uk
Funding Notes
References
2. Resistance to TGFb suppression and improved anti-tumor responses in CD8+ T cells lacking PTPN22. Brownlie RJ, Garcia C, Ravasz M, Zehn D, Salmond RJ, Zamoyska R. Nat. Commun. 2017, 7:1343
3. mTOR regulation of glycolytic metabolism in T cells. Salmond RJ. Front Cell Dev Biol. 2018, 6:122.
Email Now
Why not add a message here
The information you submit to University of Leeds will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Leeds, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Cancer: Inhibiting cell metabolism to enhance tumour cell death
University of Leeds
Hypoxia and HIF signalling in TME as regulators of pro- and anti- tumour-associated immune cell functions (ref: SF22/HLS/APP/GIELING)
Northumbria University
The extracellular matrix in hepatocellular carcinoma (HCC): how the microenvironment modulates anti-tumour immunity
King’s College London