FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW

Integrated Earth Observation (EO) mapping change across the land and sea


   Ocean and Earth Science

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr C Thompson, Ms Christine Sams, Dr Clive Neil, Dr P Bell, Dr J Brown  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Project Rationale

Satellite data allow the assessment of historic coastal change in the context of natural variability at a global scale. However, data resolution and types continually evolve, and no one data type or analysis can fully describe key coastal environments (i.e. topography, bathymetry, and hydrodynamics).

While the UK is rich in coastal observations, this is not the case everywhere. Even in observation rich environments, data are rarely automatically combined to provide a full picture of the coast. Finding integrated Earth Observation (EO) solutions to quantify trends in coastal change, identify tipping points in the coastal state, and produce early warning of vulnerability, will support authorities as they strive to deliver sustainable management plans and healthy ecosystems. New algorithms to integrate disparate observations are vital to enable incorporation of evolving bathymetries and habitats into coastal models, used to assess natural and anthropogenic hazards. Developing techniques using UK sites provides the necessary validation data to confidently understand the uncertainties.

This PhD aims to integrate different EOs over regional and global scales to deliver real-time monitoring and early warning of (adverse) coastal change in a world striving to build coastal climate resilience, and to a better understand global variability in coastal change trends.

Methodology

Objectives:

1.   Integrate a range of EOs at different spatial and temporal resolutions to assess coastal change.

2.   Quantify the uncertainty in mapping techniques applied at different resolutions, while determining the applicability to assessments of coastal change at a range of scales.

3.   Use of an integrated EO product directly in coastal flood and erosion hazard models to identify key drivers that lead to tipping points in shoreline change.

To deliver these objectives, ways to integrate optical and Synthetic Aperture Radar (SAR) satellite data and airborne Lidar data will be investigated along with methods to integrate EOs into coastal hazard impact models (e.g. Jevrejeva et al., 2020).

Data will be sourced from the freely available NASA Landsat optical satellite archive (1972 - present), and ESA Copernicus Sentinel-1 and 2 constellations (2016+).

Existing methods will be used to map intertidal beach morphology (Bell et al., 2016) and flood hazard assessment at seasonal timescales (Bird et al., 2017).

The project will take advantage of recent advances in the availability of Machine Learning (ML) libraries which mean that ML is increasingly available for finding patterns in large and disparate datasets using techniques including k-means clustering, random forests and artificial neural networks. 

Training

The INSPIRE DTP programme provides comprehensive personal and professional development training alongside extensive opportunities for students to expand their multi-disciplinary outlook through interactions with a wide network of academic, research and industrial/policy partners. The student will be registered at the University of Southampton and hosted at the National Oceanography Centre, Southampton.

Opportunities to join the Channel Coastal Observatory in survey work will provide experience in the regional monitoring requirements for Local Authorities.

Working with the National Oceanography Centre’s Satellite and Coastal Ocean Processes teams new skills in machine learning, data analysis and numerical modelling will be gained ustilising Python, Matlab or R where appropriate.

Training in data interpretation and analysis skills will focus on: methods to quantitatively assess the impact of the spatial resolution of the data; and topographic mapping techniques from the depth of closure to the hinterland. Training in computationally inexpensive coastal models (e.g. XBeach and Delft3D) will be delivered to incorporate EOs with national monitoring networks to demonstrate new approaches to automate data processing for coastal hazard assessment (e.g. regular vulnerability mapping). 


Funding Notes

Please see https://inspire-dtp.ac.uk/how-apply for details.
To be considered for this project you MUST submit a formal online application form - full details on how to apply can be found here https://inspire-dtp.ac.uk/how-apply

References

Bell., P.S., Bird, C.O. and Plater, A.J. (2016). A temporal waterline approach to mapping intertidal areas using X-band marine radar. Coastal Engineering, 107: 84-101. https://www.sciencedirect.com/science/article/pii/S037838391500157X
Bird, C.O., Bell, P.S. and Plater, A.J. (2017). Application of marine radar to monitoring seasonal and event-based changes in intertidal morphology. Geomorphology, 285: 1-15. https://www.sciencedirect.com/science/article/pii/S0169555X16306493
Jevrejeva, S., Bricheno, L., Brown, J., Byrne, D., De Dominicis, M., Matthews,, A., Rynders, S., Palanisamy, H. and Wolf, J. (2020). Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea. Natural Hazards and Earth System Sciences, 20: 2609-6226. https://doi.org/10.5194/nhess-20-2609-2020

How good is research at University of Southampton in Earth Systems and Environmental Sciences?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
PhD saved successfully
View saved PhDs