Coventry University Featured PhD Programmes
University of Glasgow Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
University of Kent Featured PhD Programmes
Karlsruhe Institute of Technology Featured PhD Programmes

Integrated Gallium Nitride (GaN) Surface Acoustic Wave (SAW) RF Filters

  • Full or part time
  • Application Deadline
    Tuesday, April 30, 2019
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Current flagship high-end smartphones (like the IPhone-X or similar) use on the order of 30 high frequency RF filters and as we move towards widespread 5G adoption, this number is expected to increase as we add more frequency bands [1]. Currently, these systems are built in a packaging tour-de-force (see for ex: Qualcomm’s RF 360 module, Qorvo Fusion or equivalent) wherein multiple individual discrete filters are mounted and interfaced with the power amplifier / LNA in a single multi-chip module. But while these systems are referred to as integrated front ends, they still rely on discrete components and impedance matching and require complex packaging. In this project, we aim to exploit the high mobility and piezoelectric properties of GaN by building integrated platforms that interface acoustic devices (SAW filters) with GaN HEMTs (both power amplifiers on the transmit and low noise amplifiers on the receive end).

Gallium nitride (GaN) holds a special place amongst semiconductors because it is the only material with a technologically desirable combination of electrical (high band-gap, high electron mobility), optical (direct band-gap) and mechanical (low intrinsic dissipation and high piezoelectric coefficient) properties [2]. The ability to exploit more than one behaviour of a material simultaneously allows us to build devices and systems that achieve performances that are hard to match with hybrid integration of multiple materials. This is especially true as we move towards higher operating frequencies (> 2 GHz), where device parasitics become increasingly important.

Further Particulars

Candidate Requirements
Candidates should possess a minimum 2:1 honour degree in Electrical Engineering, Physics or a related discipline
Candidates interested in RF engineering, nanofabrication, semiconductor devices and hands on experiments are encouraged to apply.

Informal enquiries

For informal enquiries, please email Dr Krishna Coimbatore Balram,
For general enquiries, please email

Application Details

To apply for this studentship, submit a PhD application using our online application system [] Please select PhD Electrical and Electronic Engineering on the Programme Choice page and enter details of the studentship when prompted in the Funding and Research Details sections of the form with the name of the supervisor. Closing date for applications 30 April 2019.

Funding Notes

Scholarship covers full UK/EU (EU applicants who have been resident in the UK for 3 years prior to 1st September 2018) PhD tuition fees and a tax-free stipend at the current RCUK rate (£14,777 in 2018/19). EU nationals resident in the UK may also apply but will only qualify for PhD tuition fees.


[1] Lam, C. S. "A review of the timing and filtering technologies in smartphones." Frequency Control Symposium (IFCS), 2016 IEEE International. IEEE, 2016.
[2] Rais-Zadeh, Mina, et al. "Gallium nitride as an electromechanical material." J. Microelectromech. Syst 23.6 (2014): 1252-1271.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.