Coventry University Featured PhD Programmes
University of Sheffield Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Sheffield Featured PhD Programmes

Integrated Terahertz Oscillator Circuits with Active Two-Terminal Electronic Devices

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (Students Worldwide)
    Funded PhD Project (Students Worldwide)

About This PhD Project

Project Description

The terahertz frequency range is located between the microwave and mid-infrared regions of the electromagnetic spectrum. It has long resisted full commercial exploitation owing to difficulties in fabricating convenient sources and detectors; terahertz radiation is too high in frequency to be generated easily by the electronic techniques used in mobile telephones, but too low in frequency to be produced by the optical techniques exploited in, for example, lasers for CD players.

However, the last twenty years have witnessed a remarkable growth in the field owing to the development of innovative sources, detectors, and imaging systems. One of the innovative sources to generate terahertz radiation uses a two-terminal device with a semiconductor superlattice. The negative differential resistance of such a superlattice electronic device undampens a resonant transmission-line (or a resonant LC) circuit, which in turn yields terahertz oscillations. State-of-the-art results were recently achieved with these superlattice electronic devices in resonant waveguide circuits.

Full integration of resonant circuits with these superlattice electronic devices, but also with other active two-terminal devices such as Gunn devices or IMPATT diodes greatly facilitates portable commercial applications such as medical diagnostics and ultra-wideband wireless communications far beyond current 5G technology.

The PhD project will develop and study these integrated structures and hence greatly enhance the performance boundaries of oscillators with active two-terminal electronic devices from the current state-of-the-art results. It will include device fabrication, simulation, and precision measurement.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.