Imperial College London Featured PhD Programmes
Gdansk University of Technology Featured PhD Programmes
Queen’s University Belfast Featured PhD Programmes

Investigate the novel therapeutic potential for treating heart failure in diabetes.


   Faculty of Biology, Medicine and Health

  ,  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Heart failure is the most common cause of mortality in diabetes patients, but current diabetes therapies have a limited impact on the incidence of heart failure in diabetic populations. Diabetic cardiomyopathy (DCM) is a distinct myocardial disease accelerating the progression of heart failure; however, there is a dearth of effective clinical therapies for treating DCM1. Thus, it is crucial to decipher the molecular pathogenesis of DCM and discover therapeutic approaches for heart failure in T2D.

Diabetes stress impairs metabolic flexibility in the heart, and subsequently induces DCM, characterised by supressed fatty acid and glucose utilization, lipid accumulation, oxidative stress accompanied with profound apoptosis in cardiomyocytes, which eventually leads to myocardial energy deprivation and a deterioration in contractility. Hypoxia-inducible factor (HIF) has emerged as a potential candidate for therapeutic manipulation in DCM, because it has a strong impact on cellular metabolism. Prolyl-hydroxylases (PHDs) catalyse the degradation of HIF. PHDs are upregulated by oxygen, abnormal metabolic status, and oxidative stress, which impairs lipid and glucose metabolism, resulting in decreased mitochondrial ATP synthesis. Interestingly, inhibition of PHDs in the myocardium is cardioprotective in hypoxia, therefore PHDs have become an attractive therapeutic target for treating ischemia. In addition, genetic and pharmacological inhibition of PHDs activate adaptive responses in various cells under pathological stresses. However, the function of cardiac PHDs in DCM and the molecular mechanisms underlying PHDs regulation of cardiac metabolism is largely unknown. Importantly, our pilot data has demonstrated that PHDs are increased in the failing heart in diet-induced diabetic mice. Thus, it is crucial to investigate whether inhibition of PHDs has therapeutic potential for treating heart failure in T2D. Given that PHDs inhibitors are in clinical trials for the treatment of anaemia, the path for translating these drugs into suitable T2D therapies has already begun.

Entry Requirements

Candidates are expected to hold (or be about to obtain) a minimum upper second class honours degree (or equivalent) in a related subject. Candidates with experience in any molecular and cellular techniques or with an interest in diabetes and heart diseases are encouraged to apply. 

How To Apply

For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website (https://www.bmh.manchester.ac.uk/study/research/apply/). Informal enquiries may be made directly to the primary supervisor. On the online application form select the appropriate subject title.

For international students, we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences.

Equality, Diversity and Inclusion

Equality, diversity and inclusion is fundamental to the success of The University of Manchester, and is at the heart of all of our activities. The full Equality, diversity and inclusion statement can be found on the website https://www.bmh.manchester.ac.uk/study/research/apply/equality-diversity-inclusion/”


Funding Notes

Applications are invited from self-funded students. This project has a Band 2 fee. Details of our different fee bands can be found on our website (View Website).

References

1. Boudina S & Abel ED. Circulation. 2007; 115:3213-3223.
2. Doenst T, et al. Circ. Res. 2013; 113, 709–724.
3. Meneses AM & Wielockx B. Hypoxia. 2016; 4:53-67.
4. Bishop T & Ratcliffe PJ. Circ Res. 2015; 117:65-79.
5. Yeh T, et al. Chem Sci. 2017; 8:7651-7668.

Email Now


Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs