Weekly PhD Newsletter | SIGN UP NOW Weekly PhD Newsletter | SIGN UP NOW

Investigating the impact of urban greening on urban air quality

   Department of Chemistry

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Jaqueline Hamilton, Prof James Lee  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Poor air quality is the biggest environmental factor contributing to premature mortality globally. As the Earth’s population has grown, the number of people living in urban areas has increased rapidly from 751 million in 1950 to 4.2 billion in 2018. By 2030, the UN estimates there will be 43 megacities (> 10 million inhabitants), with most of them located in developing countries in Africa, Asia and Latin America. In the recent update to the global burden of disease, long-term exposures to fine particulate matter (PM2.5) was estimated to contribute to 4.9 million premature deaths annually, with respiratory and cardiovascular diseases, cancer, diabetes and links to dementia being the main contributors. A large fraction of PM2.5 in cities is organic matter formed in the atmosphere, known as secondary organic aerosol (SOA), but based on current methods, we lack the ability to characterise whether the biogenic or anthropogenic sources are dominant.

Most cities have a high percentage of urban green space and plants, grasses and trees can lead to emissions of a complex mixture of biogenic volatile organic compounds (BVOC) including isoprene, monoterpenes, sesquiterpenes and green leaf volatiles. As the atmospheric makeup of cities changes due to (a) increased electrification of the vehicle fleet, (b) increased global temperatures and (c) pollutant mitigation strategies promoting urban greening, the reactive mix of VOCs will also change and BVOCs will become increasingly important contributors to particle formation.

Photochemical oxidation of highly reactive BVOC in the presence of anthropogenic pollutants, in particular nitrogen oxides (NOx) and sulfur dioxide (SO2), can lead to significantly enhanced SOA production, but the impact of this in urban areas is still unknown. A potentially large and unquantified B-A interaction route is the formation of organosulfates (OS) from the interaction of oxidation products of VOCs with sulfate aerosols. Hundreds of different OS have now been found in particles in a range of locations (urban, suburban and rural) and from a wide array of precursors, both biogenic and anthropogenic. Mixed nitroxyorganosulfates (NOS), containing both sulfate and nitrate functionalities, have been found to be very important sources of SOA and are dominated by BVOC precursors, even in cities.

A recent review on OS indicates the formation routes for OS are uncertain and for NOS are completely unknown. Previous indirect measurements indicate that the sum of all OS can contribute 5-30 % of organic aerosol mass, but these are prone to high levels of uncertainty. Currently, there are very few compositional measurements of OS and NOS formed from B-A interaction in urban areas. We have shown that current methods for OS quantification can suffer from high level of uncertainty and the lack of a suitable analytical technique makes quantification of the complete OS content in PM currently impossible. Additionally, although OS and NOS are predicted to make up a significant fraction of ambient PM their toxicity has not been investigated. OS and NOS have both a water-soluble head and a tail that can be lipid soluble, suggesting they may both interact with and cross cellular and intracellular membrane bound compartments, with impacts on cell viability and function.

The aim of this PhD studentship is to develop new methodologies to determine the role and magnitude of biogenic-anthropogenic interactions in forming organosulfates in urban particulate matter and develop collaborations to determine their impact on particle toxicity. Non-targeted high resolution mass spectrometry will be combined with machine learning approaches to identify the sources of organosulfates in urban areas, including Beijing, Guangzhou, Delhi and Manchester and compare this to samples in forested regions with limited air pollution collected as part of this studentship. This work will lead to transformative understanding of the sources of organic aerosol, critically needed in order to create effective policies to improve urban air quality and health.

The student will work under the supervision of Professors Jacqui Hamilton and James Lee. The student will be based in the Wolfson Atmospheric Chemistry Laboratory, part of the Department of Chemistry at the University of York. These were established in 2013 and comprise a state-of-the-art dedicated research building, the first of its kind in the UK.

The studentship is offered as part of the NERC PANORAMA Doctoral Training Programme that will provide training in addition to that offered by the department. Through both the departmental and PANORAMA training, there are a wide range of training activities, including courses aimed at specific science objectives, at improving your transferable skills and putting your work into a wider scientific context.

You will have a strong background in the physical sciences (good degree in chemistry, physics or similar science), a keen interest in environmental issues, and an aptitude and enthusiasm for experimental work.

We appreciate that this PhD project encompasses several different science and technology areas, and we don’t expect applicants to have experience in many of these fields. The project is well supported with experienced scientists and training in these new techniques and disciplines.

All Chemistry research students have access to our innovative Doctoral Training in Chemistry (iDTC): cohort-based training to support the development of scientific, transferable and employability skills: https://www.york.ac.uk/chemistry/postgraduate/training/idtc/ 

The Department of Chemistry holds an Athena SWAN Gold Award and is committed to supporting equality and diversity for all staff and students. The Department strives to provide a working environment which allows all staff and students to contribute fully, to flourish, and to excel: https://www.york.ac.uk/chemistry/ed/. 

For more information about the project, click the supervisor's name above to email the supervisor. For more information about the application process or funding, please click on email institution

This PhD will formally start on 1 October 2023. Induction activities may start a few days earlier.

To apply for this project, submit an online PhD in Chemistry application: https://panorama-dtp.ac.uk/how-to-apply/

You should hold or expect to achieve the equivalent of at least a UK upper second class degree in Chemistry or a related subject.  Please check the entry requirements for your country: https://www.york.ac.uk/study/international/your-country/

The NERC Panorama DTP are hosting ‘Demystifying the PhD application process’ webinars on the 9th and 12th December – sign up now!

Funding Notes

This project is available as part of the NERC Panorama DTP, and is a fully funded studentship covering the full cost of University fees plus Maintenance of £17,668 (2022/23 rate) per year for 3.5 years, and a generous research training and support grant (RTSG). Applications are open to both home and international applicants. Please note the number of fully funded awards open for international applicants is limited by UKRI to 30% (7 studentships).

How good is research at University of York in Chemistry?

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs