Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

Investigating the mechanisms for cardiac fibrosis development


Institute of Cardiovascular Sciences

About the Project

Fibrosis is a hard to treat condition of major socioeconomic importance, with ~45% of all deaths in the developed world being attributed to some type of chronic fibro-proliferative disease and is exemplified by heart disease. Cardiac fibrosis is highly predictive of hospitalization and mortality. Patients diagnosed with dilated or non-ischemic cardio-myopathy concurrent with cardiac fibrosis are 18x more likely to die from cardiovascular disease than those without fibrosis. This is because cardiac fibrosis translates into impaired heart pumping, reduced myocardial electrical transmission and increased arrhythmia, often leading to heart failure and sudden cardiac death.

As a therapeutic target, the need to tackle fibrosis is well-recognized internationally by the EU consortium FibroTargets [link] but the mechanisms driving cardiac fibrosis are unclear. Our work is focused on development of multi-cellular cardiac fibrosis models[1] and identification of novel anti-fibrotic targets[2].

We will utilise a combination of in vitro cardiac fibrosis models, in vivo work and in silico modelling studies to examine the mechanisms driving the cardiac fibrosis. Our expertise in cardiac optical mapping will be used to assess mechanisms driving fibrosis-mediated electrical dysfunction and arrhythmias[3-8].

Research Environment and Learning Outcomes: Required equipment is available at the Institute of Cardiovascular Sciences. Dr Pavlovic has an excellent track record in supervising postgraduate students to completion and acts as Deputy Director for Postgraduate Studies at the College of Medical and Dental Sciences. He has published over 34 papers, 15 of which in the last 3 years. Dr Pavlovic leads a team of 2 postdoctoral researchers and 3 PhD students. He also acts as a mid-career lead for the International Society for Heart Research [link] and has run a highly successful Cardiovascular Webinar series [link].
Person Specification
Applicants should have a commitment to cardiovascular research and have an interest in translational medicine (application of discovery science skills to advance clinical practice). Applicants should preferably have some experience in cellular and organ level cardiovascular methods, electrophysiology and molecular biology techniques. Applicants need to be able to work as part of a multidisciplinary research team.
For more information about the Pavlovic research group, the Institute of Cardiovascular Sciences please see:
http://www.birmingham.ac.uk/staff/profiles/cardiovascular-sciences/pavlovic-davor.aspx
https://www.birmingham.ac.uk/research/cardiovascular-sciences/atrial-fibrillation-and-heart-failure.aspx
http://www.birmingham.ac.uk/research/activity/cardiovascular-sciences/index.aspx
To find out more about studying for a PhD at the University of Birmingham, including full details of the research undertaken in each Institute, the funding opportunities for each subject, and guidance on making your application, you can now order your copy of the new Doctoral Research Prospectus, at: http://www.birmingham.ac.uk/students/drp.aspx
To apply, please submit your CV and a covering email/letter for consideration to Dr Davor Pavlovic ()

Funding Notes

View Website
To find out more about studying for a PhD at the University of Birmingham, including full details of the research undertaken in each Institute, the funding opportunities for each subject, and guidance on making your application, you can now order your copy of the new Doctoral Research Prospectus, at: View Website
To apply, please submit your CV and a covering email/letter for consideration to Dr Davor Pavlovic ()

References

[1] M. Ackers-Johnson, P.Y. Li, A.P. Holmes, S.M. O'Brien, D. Pavlovic, R.S. Foo, A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Nonmyocytes From the Adult Mouse Heart, Circ Res, 119 (2016) 909-920.
[2] J.P. Law, A.M. Price, L. Pickup, A. Radhakrishnan, C. Weston, A.M. Jones, H.M. McGettrick, W. Chua, R.P. Steeds, L. Fabritz, P. Kirchhof, D. Pavlovic, J.N. Townend, C.J. Ferro, Clinical Potential of Targeting Fibroblast Growth Factor-23 and alphaKlotho in the Treatment of Uremic Cardiomyopathy, J Am Heart Assoc, 9 (2020) e016041.
[3] C. O'Shea, S.N. Kabir, A.P. Holmes, M. Lei, L. Fabritz, K. Rajpoot, D. Pavlovic, Cardiac optical mapping - State-of-the-art and future challenges, Int J Biochem Cell Biol, (2020) 105804.
[4] C. O'Shea, J. Winter, A.P. Holmes, D.M. Johnson, J.N. Correia, P. Kirchhof, L. Fabritz, K. Rajpoot, D. Pavlovic, Temporal irregularity quantification and mapping of optical action potentials using wave morphology similarity, Prog Biophys Mol Biol, (2019).
[5] C. O'Shea, D. Pavlovic, K. Rajpoot, J. Winter, Examination of the Effects of Conduction Slowing on the Upstroke of Optically Recorded Action Potentials, Front Physiol, 10 (2019) 1295.
[6] C. O'Shea, A.P. Holmes, T.Y. Yu, J. Winter, S.P. Wells, B.A. Parker, D. Fobian, D.M. Johnson, J. Correia, P. Kirchhof, L. Fabritz, K. Rajpoot, D. Pavlovic, High-Throughput Analysis of Optical Mapping Data Using ElectroMap, J Vis Exp, (2019).
[7] C. O'Shea, A.P. Holmes, J. Winter, J. Correia, X. Ou, R. Dong, S. He, P. Kirchhof, L. Fabritz, K. Rajpoot, D. Pavlovic, Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology, Front Physiol, 10 (2019) 182.
[8] C. O'Shea, A.P. Holmes, T.Y. Yu, J. Winter, S.P. Wells, J. Correia, B.J. Boukens, J.R. De Groot, G.S. Chu, X. Li, G.A. Ng, P. Kirchhof, L. Fabritz, K. Rajpoot, D. Pavlovic, ElectroMap: High-throughput open-source software for analysis and mapping of cardiac electrophysiology, Sci Rep, 9 (2019) 1389.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Birmingham will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2021
All rights reserved.