Imperial College London Featured PhD Programmes
University of Portsmouth Featured PhD Programmes
University College London Featured PhD Programmes
University of West London Featured PhD Programmes
University of Reading Featured PhD Programmes

Investigating the physiological deformation of heart valves using in vivo and in vitro techniques


Project Description

Applications are invited for a three year PhD to commence in October 2020.

The PhD will be based in the Faculty of Technology, and will be supervised by Dr Afshin Anssari-Benam, Dr Andrea Bucchi and Dr Martino Pani.

The work on this project involves:
- Quantifying deformations endured by the semilunar valves during their function using a range of in vivo and in vitro techniques
- Quantifying the ensuing deformation rates
- Quantifying the rate effects on the mechanical behaviour of the valves at physiological and pathophysiological conditions versus the general testing conditions in vitro performed in labs
- The in vivo and in vitro techniques will be developed based on real-time patient-specific images of valves’ opening and closure, as well as multi camera digital volume correlation in conjunctions with bioreactors mounted with valves

In a series of recent publications, the supervisory team has demonstrated that the mechanical behaviour of semilunar heart valves is rate-dependent. Therefore, a correct understanding of the true mechanical behaviour of the semilunar valves, and thereby developing appropriate computational models and improved (bio)prosthetic valve designs crucially relies on an accurate quantification of the deformation characteristics of the valves in vivo, particularly the true physiological deformation rates and the actual amount by which the valves deform.

The PhD programme involves quantifying: 1- Deformations endured by the semilunar valves during their function using a range of in vivo and in vitro techniques; 2- The ensuing deformation rates; and 3- The rate effects on the mechanical behaviour of the valves at physiological and pathophysiological conditions versus the general laboratory testing conditions. The in vivo and in vitro techniques will be developed based on clinical patient-specific images of valves and multi camera digital volume correlation (MCDVC) of valve function within a custom-designed bioreactor.

This project will be carried out in a close collaboration with Portsmouth Hospitals NHS Trust and the Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College. The successful candidate will be based at the Cardiovascular Engineering Research Laboratory (CERL), but expected to spend time at the collaborating hospital to develop the imaging protocols and acquire the images, as well as the NHLI for setting up the MCDVC system with the bioreactor. Clinical supervision will be provided by the collaborating hospital, and the activities at the NHLI will be supervised by Dr. Adrian Chester.

General admissions criteria
You’ll need an upper second class honours degree from an internationally recognised university or a Master’s degree in an appropriate subject. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

Specific candidate requirements
You should have a strong background in biomechanics, mechanical engineering or a closely related field. Previous experience in mechanical testing of soft tissues and programming in MATLABis desirable.

How to Apply
We’d encourage you to contact Dr Afshin Anssari-Benam () to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. An extended statement as to how you might address the proposal would be welcomed.

Our ‘How to Apply’ page offers further guidance on the PhD application process.

If you want to be considered for this funded PhD opportunity you must quote project code SMDE4590220 when applying.

Funding Notes

Candidates applying for this project may be eligible to compete for one of a small number of bursaries available; these cover tuition fees at the UK/EU rate for three years and a stipend in line with the UKRI rate (£15,009 for 2019/2020). Bursary recipients may be eligible for £1,500 for project costs/consumables.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.