Looking to list your PhD opportunities? Log in here.
About the Project
Tetraspanin membrane proteins are emerging as potential therapeutic targets for major human disorders such as cancer, infection and inflammatory diseases. Tetraspanins function by regulating other membrane proteins including certain proteases, ion channels and adhesion proteins. The tetraspanins are important for the trafficking of these partner proteins to the cell surface and for their lateral mobility and clustering on the cell surface. There are 33 tetraspanins in humans but many remain functionally uncharacterised. Nevertheless, experiments in tetraspanin knockout mice and cultured cells, and genome-wide association studies, are revealing tetraspanin links to human disease. Moreover, recent structural studies show that tetraspanins have cone-shaped structures with the potential for conformational change and drug targeting. The overarching aim of this project is to discover novel mechanisms of tetraspanin action using our recently developed lipid nanodisc technology, namely styrene maleic acid lipid particles (SMALPs). SMALPs are 10 nm diameter particles containing discs of the plasma membrane and a surrounding belt of styrene maleic acid (SMA) copolymer. The SMA effectively acts as a ‘cookie cutter’ when applied to cultured cells, in generating discs of membrane proteins encapsulated within the lipid bilayer. Importantly, membrane protein complexes are retained within SMALPs, enabling their functional and structural characterisation in their native lipid environment. Our analyses of SMALPs on native protein gels using a novel methodology, SMA-polyacrylamide gel electrophoresis (PAGE), has revealed new tetraspanin interacting partners.
The objectives of the project are as follows:
● To identify novel tetraspanin interaction partners using SMA-PAGE and mass spectrometry proteomics.
● To investigate how tetraspanins regulate the identified partners using CRISPR/Cas9 knockout of the tetraspanins and functional assays in cultured cells.
● To gain structural information on tetraspanin complexes with partner proteins in SMALPs. The impact of the project will be the identification of novel mechanisms by which tetraspanins regulate cell function, thus enabling future translational work on tetraspanins as drug targets in human disease.
References
Harrison, N.; Koo, C. Z.; Tomlinson, M. G., Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. International journal of molecular sciences 2021, 22, (13).
Pollock, N. L.; Rai, M.; Simon, K. S.; Hesketh, S. J.; Teo, A. C. K.; Parmar, M.; Sridhar, P.; Collins, R.; Lee, S. C.; Stroud, Z. N.; Bakker, S. E.; Muench, S. P.; Barton, C. H.; Hurlbut, G.; Roper, D. I.; Smith, C. J. I.; Knowles, T. J.; Spickett, C. M.; East, J. M.; Postis, V. L. G.; Dafforn, T. R., SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. Biochim Biophys Acta Biomembr 2019, 1861, (8), 1437-1445.
How good is research at University of Birmingham in Biological Sciences?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesEmail Now
Why not add a message here
The information you submit to University of Birmingham will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Birmingham, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Structure, regulation and dynamics of small G proteins and their interactions with membranes and effector proteins
University of Cambridge
Structure and function of bacterial proteins
Kingston University
Investigating food structure and interactions of food components using hyperspectral Raman imaging and optical tweezers
Massey University