Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  It’s a shock! The light side of circumstellar interaction in stellar explosions


   Cardiff School of Physics and Astronomy

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr C Inserra  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

 Supernovae are catastrophic stellar explosions shaping the visible Universe. They play an important role in the synthesis and distribution of almost all elements and especially heavy elements such as iron, enriching the Universe since the first supernova explosion when the cosmos was metal-free. We are now in the golden era of supernova astronomy - and in general of transients – since astronomical surveys are discovering roughly 20000 transients per year. Future astronomical experiments (for example the Large Survey of Space and Time - LSST) will boost the number of yearly discoveries by a factor of 100.

 What happens when a star explodes into a dense circumstellar material? The faster moving ejecta will collide with slower moving circumstellar material (CSM), likely cause by mass loss via wind, stellar instability or because influenced by a companion star in a binary system. A forward shock is launched into the CSM, while a reverse shock moves back into the expanding material coming from the explosion. The luminosity evolution, also known as the light curve as it is given by the photons produced during the explosion, is mainly driven by the characteristic of the surrounding medium (density, geometry, composition) and the shock propagation in the supernova and circumstellar medium. The scope of this PhD project is to identify and analyse the physical and geometrical characteristics of the shocks and the medium to create the first physically realistic analytical code able to reproduce a variety of luminosity evolutions driven (totally or partially) by interaction between the supernova material and a circumstellar medium. This will unveil the nature of their progenitor system, and heir evolution across cosmic times, giving a unique glimpse of stellar evolution in different environments!

 In this project, the PhD student will gather knowledge of supernova explosions linked to the life and death of massive stars as well as programming skills in python and experience in observational astronomy, data reduction and data analysis.

 Eligibility

The typical academic requirement is a minimum of a 2:1 a relevant discipline.

Applicants whose first language is not English are normally expected to meet the minimum University requirements (e.g. 6.5 IELTS) (https://www.cardiff.ac.uk/study/international/english-language-requirements)

How to apply

Applicants should apply to the Doctor of Philosophy in Physics and Astronomy.

Applicants should submit an application for postgraduate study via the Cardiff University webpages (https://www.cardiff.ac.uk/study/postgraduate/research/programmes/programme/physics-and-astronomy) including:

• your academic CV

• a personal statement/covering letter

• two references, at least one of which should be academic

• Your degree certificates and transcripts to date (with certified translations if these are not in English).

In the "Research Proposal" section of your application, please specify the project title and supervisors of this project.

This project is only available to self-funded students, please can you include your funding source in the "Self-Funding" section.

Mathematics (25) Physics (29)

Funding Notes

Please note that bench fees may be charged in addition to tuition fees for this project. This will be confirmed as part of any formal offer for this project.

How good is research at Cardiff University in Physics?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.