Postgrad LIVE! Study Fairs

Southampton | Bristol

University of Manchester Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
University of Reading Featured PhD Programmes

Lie groups and twisted K-theory

  • Full or part time
  • Application Deadline
    Friday, March 15, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The main goal of algebraic topology is to associate algebraic structures to topological spaces that remain unchanged if the spaces are deformed continuously. Understanding these topological invariants often gives rise to powerful classification results with applications in other research areas like algebra or mathematical physics.

Background
Generalised cohomology theories are particularly well computable invariants and topological K-theory belongs to this class. It is a cohomology theory built from the algebra of vector bundles over a space.

A variant of this theory, called twisted K-theory, relies on extra structure - called a twist - usually encoded in a bundle of algebras or a gerbe over the space. It should be thought of as the K-theoretic analogue of ordinary cohomology with local coefficients. Equivariant twists over Lie groups gained increasing importance due to a deep theorem by Freed, Hopkins and Teleman, which relates the twisted equivariant K-group of a Lie group to the Verlinde ring of positive energy representations of its free loop group. In case of the groups SU(n), there is a natural generalisation of the twist considered by these authors, which involves exponential functors on finite dimensional complex vector spaces.

Project aims and methods
This project deals with the computation of the characteristic classes of these twists in rational cohomology. Partial results in this direction have already been achieved in a preprint. The generators of the cohomology rings of the (special) unitary groups can be detected via natural maps from the suspension of complex projective space to the groups. The project involves studying generalisations of those maps from projective spaces to Grassmann manifolds. Continuous maps of this type appeared in several other places in algebraic topology as well, most notably in the work of Miller on the stable splitting of the unitary groups. The successful applicant will have the opportunity to explore those connections.

Funding Notes

UK Research Council eligibility conditions apply.
Full awards (fees plus maintenance stipend) are open to UK Nationals and EU students who can satisfy UK residency requirements. To be eligible for the full award, EU Nationals must have been in the UK for at least 3 years prior to the start of the course for which they are seeking funding, including for the purposes of full-time education.

References

Applicants should submit an application for postgraduate study via the Cardiff University Online Application Service.

Applicants should select Doctor of Philosophy (Mathematics) October 2019

In the research proposal section of your application, please specify the project title and supervisors of this project.

How good is research at Cardiff University in Mathematical Sciences?

FTE Category A staff submitted: 24.05

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.