FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Tom Fletcher  Applications accepted all year round  Competition Funded PhD Project (UK Students Only)

About the Project

The development of a hydrogen economy is a key part of the UK’s commitment to net zero as recommended by the Climate Change Committee. Whereas battery electric vehicles are expected to satisfy the vast majority of light duty vehicle applications, their limited energy density means that they are unsuitable for many energy-dense applications such as long-distance haulage, shipping, rail and aviation. Equally, long charging times significantly affect their suitability for high availability applications.

Fuel cells overcome these issues by separating the energy storage from the energy conversion, enabling refuelling times similar to those of conventionally fuelled vehicles (<5 minutes) while maintaining zero emissions at the point of use. However, durability is key challenge for fuel cells in these markets where the system lifetime target is 25,000 hours (by 2030) and 1 million miles for Class 8 truck applications according to the US DoE.

This research aims to tackle this challenge by producing predictive models of the causes of PEM fuel cell degradation, seeking to understand not just individual degradation modes, but the interactions between them and their development over the lifetime of the stack. Current techniques are usually split into theoretical and empirical models. Whereas theoretical models are predictive; for electro-chemical devices they tend to be highly complex, slow to simulate and contain many parameters which are difficult to determine. Conversely, empirical models are fast running, but tend to be highly simplistic have low generality. The aim of this project will be to bridge this gap to enable investigation into how design and control strategy changes will affect the long-term fuel cell durability.

In addition to the main project aim, several secondary objectives are proposed. These will form a series of interim milestones for the project and include development of standardised test procedures, accelerated aging methods, condition monitoring techniques, requirement specification for future cell development and recommendations for control strategy targets. 

This project is offered as part of the Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT).  The Centre is inspiring and working with the next generation of leaders to pioneer and shape the transition to clean, sustainable, affordable mobility for all. 

Prospective students for this project will be applying for the CDT programme which integrates a one-year MRes with a three to four-year PhD  

AAPS is a remarkable hybrid think-and-do tank where disciplines connect and collide to explore new ways of moving people. The MRes year is conducted as an interdisciplinary cohort with a focus on systems thinking, team-working and research skills. On successful completion of the MRes, you will progress to the PhD phase where you will establish detailed knowledge in your chosen area of research alongside colleagues working across a broad spectrum of challenges facing the Industry.  

The AAPS community is both stretching and supportive, encouraging our students to explore their research in a challenging but highly collaborative way. You will be able to work with peers from a diverse background, academics with real world experience and a broad spectrum of industry partners. 

Throughout your time with AAPS you will benefit from our training activities such mentoring future cohorts and participation in centre activities such as masterclasses, research seminars, think tanks and guest lectures. 

All new students joining the CDT will be assigned student mentor and a minimum of 2 academic supervisors at the point of starting their PhD. 

Funding is available for four-years (full time equivalent) for Home students. 

See our website to apply and find more details about our unique training programme (aaps-cdt.ac.uk)  


Funding Notes

AAPS CDT studentships are available on a competition basis for UK students for up to 4 years. Funding will cover UK tuition fees as well as providing maintenance at the UKRI doctoral stipend rate (£15,609 per annum for 2021/22 rate) and a training support fee of £1,000 per annum.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs