Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Birmingham Featured PhD Programmes
University College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Edinburgh Featured PhD Programmes
University of Manchester Featured PhD Programmes

LNG sloshing and Leidenfrost droplet dynamics – modelling gas-cushioned liquid-solid impacts with phase change

Project Description

The impact of liquefied natural gas (LNG) with the walls of its containing tank and the impact of droplets with very hot surfaces are two examples of liquid-solid impacts in which the liquid may be close to thermodynamic equilibrium with the surrounding gas/vapour. In addition to the usual violent fluid flows associated with liquid-solid impacts, significant phase change is possible in these cases. This project will seek to quantify this phase change and assess what effect it has on impact dynamics. In impacts without phase change, pre-impact gas cushioning in a narrow gas film separating the liquid and the solid has been observed. This leads to the formation of entrained pockets of gas, which have been modelled (see references).

In LNG sloshing, gas film pressure increases can lead to vapour condensation and reduced entrained gas pocket volumes. This effect is not currently included in LNG sloshing impact models, and consequently incorporating this phenomenon will improve the prediction of loads on the container wall and inform future LNG tank design.

Droplet impacts with heated surfaces are widely used as a method of reducing the temperature of very hot surfaces. Energy is transferred from the heated surface to individual droplets, leading to droplet evaporating and a net reduction in surface temperature. Evaporation from the droplet into the gas film enhances the pre-existing cushioning process. Once the surface reaches the Leidenfrost temperature the vapour cushion stabilizes and the droplet skates upon this cushion rather than impact the solid.

Using computational and analytical fluid dynamics, and mathematical modelling, this project will extend existing pre-impact gas-cushioning models by incorporating liquid boiling and condensation from the gas film. The models developed in this project will inform the thermofluid dynamics of liquid-solid impacts with phase change and improve understanding of the problems described.

The successful candidate should have (or expect to achieve) a minimum of a UK Honours degree at 2.1 or above (or equivalent) in Engineering, Applied Mathematics, Physics or a related discipline.

Essential knowledge of: Engineering, Applied Mathematics, Physics or a related discipline.

Desirable knowledge of: Fluid dynamics, thermodynamics. Experience of computational methods would be beneficial.


Formal applications can be completed online: You should apply for Degree of Doctor of Philosophy in Engineering, to ensure that your application is passed to the correct person for processing.


Informal inquiries can be made to Dr P Hicks () with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ().

Funding Notes

There is no funding attached to this project. It is for self-funded students only.


Hicks, P. D. & Purvis, R. Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech., 2010, 649, 135-163.

Hicks, P. D.; Ermanyuk, E. V.; Gavrilov, N. V. & Purvis, R. Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech., 2012, 695, 310-320.

Li, E. Q., Langley, K. R., Tian, Y., Hicks, P. D. & Thoroddsen, S. T. Double contact during drop impact on a solid under reduced air pressure. Phys. Rev. Lett. 2017, 119, 214502.

How good is research at Aberdeen University in General Engineering?

FTE Category A staff submitted: 38.60

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2018
All rights reserved.