Postgrad LIVE! Study Fairs

Southampton | Bristol

European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes
University of Portsmouth Featured PhD Programmes
Anglia Ruskin University Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Karlsruhe Institute of Technology Featured PhD Programmes

Locally-adaptive Bayesian modelling for medical image reconstruction

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The use of medical imaging techniques are critical in the early diagnosis and treatment of many serious conditions. Over the past 20-30 years there have been major advances in imaging speed and resolution along with equally dramatic decreases in cost. This means that every major hospital has access to highly sophisticated equipment. Although image reconstruction, an inverse problem, can be described as a statistical question, very few proposed methods have found their way into clinical practice. For example, the first paper recommending a Bayesian approach appeared more than 30 years ago, but the most widely used methods in the clinic are from more than 40 years ago. Even methods currently being developed, motivated by machine learning, are slow to progress beyond academic exercises because of practical drawbacks. In all of these cases, a critical issue is how to balance information from data with prior information in an automatic way which is robust to mismatches between prior model assumptions and reality.

This project will consider a range of Bayesian modelling situations from simple Markov random field priors for SPECT and PET data, to hybrid kernel methods of combined PET/MR or PET/CT data. The automatic estimation of unknown prior parameters alongside image reconstruction will be investigated using a hierarchical Bayesian modelling approach. Similarly, extension to non-homogeneous models will allow locally adaptive methods. The most important stage will be to incorporate models for mismatch between prior specification and reality. Each of these cases has the potential to produce methods of practical importance and hence the project can have a major impact.

Through the project supervisors, the student will have access to phantom and real data set covering a wide variety of medical applications and data collection techniques, and also to collaborators with significant practical experience.

Funding Notes

This project is open to self-funded students and is eligible for funding from the School of Mathematics Scholarships, EPSRC Doctoral Training Partnerships and the Leeds Doctoral Scholarships.

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.