University of Hong Kong Featured PhD Programmes
Peter MacCallum Cancer Centre Featured PhD Programmes
University of Exeter Featured PhD Programmes

Long term behaviour of interacting birth-and-death processes


Department of Mathematics

Applications accepted all year round Competition Funded PhD Project (European/UK Students Only)

About the Project

A single birth-and-death process on the set of non-negative integers is a classical probabilistic model for the size of a population. This is a continuous time Markov chain (CTMC) which evolves as follows. When the process is at state k, it can jump either to state k+1 (interpreted as birth event), or to state k-1, if k>0 (interpreted as death event), with transition rates that are state-dependent.

The project is devoted to the long term behaviour of a class of Markov processes that can be interpreted as a system of birth-and-death processes, whose components evolve subject to a certain interaction (interacting birth-and-death processes). Originally interacting birth-and-death processes were motivated by modelling competition between populations. In this case they are known as competition processes, which is a class of population probabilistic models. Another interesting case of interacting birth-and-death processes is a growth process motivated by physical phenomenon known as cooperative sequential adsorption (CSA). In CSA diffusing particles can get adsorbed by a material surface, when they hit it. The main peculiarity of CSA is that the adsorbed particles can change the adsorption properties of the material in a sense that they either attract, or repulse other particles. The growth process is
a system of pure birth processes whose components evolve subject to an interaction which is similar to that of CSA. In other words, the components of a growth process can either accelerate, or slow down the growth of each other. In the discrete time setting a growth process can be regarded as an interacting urn model. The latter is a class of random processes with reinforcement closely related to the generalised Polya urn model (another classical probabilistic model).



Funding Notes

Fully funded College studentships for Home/EU students are available on a competitive basis

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to Royal Holloway, University of London will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.