University of East Anglia Featured PhD Programmes
Xi’an Jiaotong-Liverpool University Featured PhD Programmes
Lancaster University Featured PhD Programmes

Low temperature steam reforming of methane for hydrogen production

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr P Kechagiopoulos
    Dr X Wang
  • Application Deadline
    Applications accepted all year round

Project Description

Hydrogen, a primary raw material of the chemical industry, presents significant potential as an energy carrier that can drive the implementation of highly efficient energy systems at a reduced environmental impact. Industrial hydrogen production though, typically taking place via natural gas steam reforming, is accompanied by significant carbon oxides emissions, mainly from the burner used to supply heat to the endothermic reaction. The need for intensification of the process has spurred the interest to search for alternative concepts. Methane steam reforming (MSR) at a low temperature range of 400-550◦C in combination with hydrogen selective membranes is one such promising approach. The milder operating conditions lead to lower operation and materials costs, while the favourable temperature eliminates the need for separate water gas shift reactors. Thermodynamic limitations, resulting in low methane conversions and hydrogen yields, can be surpassed by the use of selective membranes that remove hydrogen in situ. As a result, hydrogen is separated with high purity and at the same time the reforming reaction equilibrium is shifted to the product side.

The development of microkinetic models can greatly facilitate and accelerate catalyst design efforts via reaction mechanism elucidation and catalyst performance assessment. The current project will further build upon a previously developed, thermodynamically consistent, microkinetic model for this reaction [1]. The model considers a comprehensive set of surface pathways and has already been successfully applied to elucidate reactants activation and conversion surface pathways over Ni and Rh catalysts.

Further extensions planned to be addressed within the framework of the current project relate to explicitly accounting for support effects on steam activation, accounting for kinetic isotope effects observed during temperature programmed experiments where deuterated methane (CD4) was fed instead of CH4, and validating the model over simulated biogas steam reforming experiments. Ultimately, application of the model for the optimal design of a low temperature membrane steam reformer under realistic conditions is targeted.

Candidates should have (or expect to achieve) a UK honours degree at 2.1 or above (or equivalent) in Chemical Engineering or related discipline along with:

Chemical reactor modelling
Chemical reaction kinetics
Programming in FORTRAN or similar


• Apply for Degree of Doctor of Philosophy in Engineering
• State name of the lead supervisor as the Name of Proposed Supervisor
• State ‘Self-funded’ as Intended Source of Funding
• State the exact project title on the application form
When applying please ensure all required documents are attached:

• All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)
• Detailed CV

Informal inquiries can be made to Dr P Kechagiopoulos ([Email Address Removed]) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ([Email Address Removed])

Funding Notes

This project is advertised in relation to the research areas of the discipline of Chemical Engineering. The successful applicant will be expected to provide the funding for Tuition fees, living expenses and maintenance. Details of the cost of study can be found by visiting THERE IS NO FUNDING ATTACHED TO THIS PROJECT.


[1] P.N. Kechagiopoulos, S.D. Angeli, A.A. Lemonidou, Applied Catalysis B: Environmental 205 (2017) 238–253.

Related Subjects

How good is research at Aberdeen University in General Engineering?

FTE Category A staff submitted: 38.60

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2020
All rights reserved.