Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of East Anglia Featured PhD Programmes
University of Kent Featured PhD Programmes
University College London Featured PhD Programmes
University of Oxford Featured PhD Programmes
University of Nottingham Featured PhD Programmes

Machine learning based investigation of the imaging and genetic profile of drug-resistant epilepsy

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr A Altmann
  • Application Deadline
    No more applications being accepted
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

A 4-year PhD studentship is available in the UCL Centre for Medical Image Computing (CMIC). The funding covers an annual tax free stipend (£16,777) and tuition fees. As the studentship is partially funded by the EPSRC the standard EPSRC eligibility criteria apply, please see EPSRC website for further details. The successful candidate will join the UCL CDT in Medical Imaging cohort and benefit from the activities and events organised by the centre.

Epilepsy is a group of neurological conditions that share the common characteristic of epileptic seizures. There are many types of epilepsy and many types of seizure. The diagnosis of epilepsy typically follows the occurrence of two or more seizures. While anyone can develop epilepsy at any point in life, it is most commonly diagnosed in children and people over 65 years of age. Currently, about 60 million people are suffering from epilepsy worldwide and over 500,000 in the UK alone.

Anti-epileptic drugs (AED) are intended to reduce the frequency of seizures or even completely eliminate them. If AED treatment works, it allows people living with epilepsy to lead normal lives. However, in about one third of people none of the available drugs or combinations of drugs stop the seizures. These cases are considered treatment-resistant epilepsies and the underlying biology is still poorly understood.

In this project, the successful candidate will help to advance knowledge about drug-resistant epilepsy. Using a large database of neuroimaging data from people with epilepsy, the first aim is to establish the imaging signature of drug-resistant epilepsy compared to drug-responsive epilepsy. That is, which brain regions show different cortical thickness or structural and functional connectivity changes in resistant vs responsive epilepsy? The second phase of the project involves an imaging-genetics approach to elucidate the genetic origin of drug-resistant epilepsy, which may help to identify drug targets for currently drug-resistant epilepsy.





Requirements:
Applicants are expected to have a first degree in Computer Science or Computational Biology or Biomedical Engineering based subject passed at 2:1 level (UK system or equivalent) or above. Good working knowledge of C++ and/or Python and/or R is highly desirable. Some experience with medical image analysis or genomics data is also desirable.

Application:
To make an application for this project please send a CV and cover letter detailing why you want to apply for this studentship and why you believe you are suitable for the studentship, to Dr Andre Altmann at [Email Address Removed].

Closing date for applications: 17 August 2018. Project start date October 2018.

Funding Notes

As the post is funded via the EPSRC, applications are restricted to candidates from the UK or EU, though EU candidates must have been living and/or working in the UK for 3 years prior to the application date

References

Bioinformatics
>> * Biomedical Engineering
>> * Genetics
>> * Medical Imaging
>> * Neuroscience / Neurology
>> * Computer Science & IT
>> * Data Analysis
>> * Statistics



FindAPhD. Copyright 2005-2018
All rights reserved.