FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

Machine Learning for making risk-aware decisions: Case of survival prediction of patients registered in the US National Trauma Database


This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr V Schetinin  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

The US National Trauma Database is the major repository including 2 million records of trauma patients, available for the research community. To predict patient's outcomes practitioners use Decision tree (DT) models which can be efficiently built on given data and provide a transparent interpretation within a probabilistic framework. Averaging over DT models under certain conditions can deliver reliable information on predictive posterior probability distributions, which is of critical importance in the case of predicting a patient's outcome. Reliable estimations of the distribution can be achieved within the Bayesian framework using Markov chain Monte Carlo (MCMC) and its Reversible Jump extension enabling DT models to grow to a reasonable size. Existing MCMC strategies however have limited ability to control DT structures and tend to sample overgrown DT models making unreasonably small partitions, thus deteriorating the uncertainty calibration. This happens because the MCMC explores a DT model parameter space within a limited knowledge of the distribution of data partitions. The project aims to explore new strategies which can be adapted to variable data distribution in order to efficiently overcome the existing limitation. It is expected that in the case of predicting trauma outcomes the number of data partitions can be significantly reduced. This will reduce the unnecessary uncertainty of estimating the predictive posterior probability density.

Research Questions: (1) to explore the ability of designed strategies to extend the prediction of trauma survival (2) to explore ways of designing reliable decision models within the Bayesian framework.

The deadlines are as follows:

For March starters:

International applicants - 30th November 2021

UK nationals - 18th January 2022

For October starters:

International applicants - 30th June 2022

UK nationals - 5th August 2022


Publications: V. Schetinin, L. Jakaite, W. Krzanowski, Bayesian averaging over decision tree models: An application for estimating uncertainty in trauma severity scoring, International Journal of Medical Informatics, Volume 112, 2018, Pages 6-14, ISSN 1386-5056,
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs