Looking to list your PhD opportunities? Log in here.
About the Project
for other streaming technologies alone are not sufficient [1]. Recently many works have focused on developing QoE models targeting HAS based applications [2]. Also, the recently published ITU-T Recommendation series P.1203 proposes a parametric bitstream-based model for the quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport.
Machine learning has been proposed in the recent years to develop models for video quality assessment, with promising results [3].
The main goal of this project is to develop new QoE models for HAS based on machine learning, including the most recent video presentation formats (e.g. UHD, HDR, 360 degrees video, light field imaging). The models will consider the information available at the different points of the transmission chain, e.g., both “full reference” and “no reference” models will be considered, the latter in the case when the original video sequence is not available, as for models estimating the quality at the user terminal [4].
The project can include a few months of internship in industry (a major broadcasting or Over The Top (OTT) service provider), either in the UK or abroad, in line with the collaborations in place and being established.
Funding Notes
References
[2] N. Barman and M. G. Martini, “QoE Modeling for HTTP Adaptive Video Streaming - A Survey and Open Challenges”, IEEE Access, vol. 7, pp. 30831-30859, 2019.
[3] N. Barman, E. Jammeh, S. A. Ghorashi and M. Martini, “No-reference Video Quality Estimation Based on Machine Learning for Passive Gaming Video Streaming Applications”, IEEE Access, 2019.
[4] A. Ahmad, L. Atzori, and M. G. Martini, “Qualia: A Multilayer Solution for QoE Passive Monitoring at the User Terminal,” in IEEE International Conference on Communications (ICC), (Paris, France), May 2017.
Email Now
Why not add a message here
The information you submit to Kingston University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in London, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Big Data and Machine Learning for Reaction Design
University of Bath
Machine Learning and Domain Decomposition methods for Fluid Dynamics
Kingston University
Statistical machine learning for computational neuroscience
University of Bath