Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Material degradation study of heat-exchanger materials and coatings for renewable energy PhD


   School of Aerospace, Transport and Manufacturing (SATM)

   Applications accepted all year round  Self-Funded PhD Students Only

About the Project

This is a self-funded PhD position to work with Dr Adnan Syed in the Surface Engineering and Precision Centre. The PhD project will focus studying high temperature corrosion mechanisms in details to identify the material degradation and coatings applications details in extreme environments. A novel techniques/method will be developed with focus on better prediction and more accurate measurement of high temperature corrosion rate involving mathematical models validated through simulation, experiments and analysis.

Post COP26, the UK has also set a target to cut emissions of greenhouse gases to net zero by 2050. The power generation sector considers agricultural waste as a renewable energy source which can help offsetting coal combustion. Such Waste to Energy (WtE) plants produce flue gases that can have much higher levels of SOX and HCl than coal fired systems, and this can cause increased high temperature corrosion (HTC) damage to surfaces of heat-exchanger (HX) materials. Coating of HX materials in power plant boilers is widely used to mitigate HTC. Multiple routes for coating chemistry and application processes are being considered. A novel approach of multi-layered advanced material coatings system will be studied in this project .The lack of ability of early detection and timely prevention of high temperature corrosion has resulted in many HX failures leading to long term maintenance and replacement of parts.

The alloy material of HX are prone to high temperature corrosion attack because of the corrosive nature of molten salt deposits and gases. The salt deposits and its direct contact with alloys material at elevated temperatures. cause high-temperature corrosion.

You will be based at the Surface Engineering and Manufacturing Centre, which provides state-of-the-art equipment for the testing, analysis and characterisation of materials, of exposed corroded materials. This is a self-funded PhD open to UK, EU and international applicants.

The Centre also holds network with the aerospace and energy sector which help the you in the result discussions, a possibility of meetings with relevant industrial clients for networking and technical guidance.

Engineering (12) Materials Science (24)

Register your interest for this project



How good is research at Cranfield University in Engineering?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.