University College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes

Mathematical Modelling and Analysis of Sessile Droplets

Project Description

The behaviour of sessile droplets is an area of very active international research, with new publications appearing on an almost daily basis and entire conferences now dedicated to the topic. Over the last decade, Professor Stephen Wilson has collaborated very successfully with Professor Khellil Sefiane from the School of Engineering at the University of Edinburgh (and a Visiting Professor at the University of Strathclyde) of a variety of practically important fluid-dynamical problems, including evaporating droplets, bubble dynamics, self-rewetting fluids, and anti-surfactants.

The aim of the present project is to build on the proposed supervisors’ previous work on evaporating sessile droplets to explore two exciting new aspects of this scientifically and practically important problem.

Very recent work by Sefiane and his collaborators have provided the first comprehensive experimental investigation of vapour absorption by sessile droplets of a desiccant liquid (i.e. one which draws moisture from the air). The mathematical modelling and analysis of such systems is an exciting and challenging open problem.

In practice, droplets almost never occur singly, but, due to the inherent complexity of the multiple-droplet problem, so far very little work has been done on the interactions between evaporating droplets. The aim of the proposed work is to investigate the fascinating but virtually unexplored subject of the collective behaviour of large arrays of small sessile droplets. Interactions between the droplets (in particular, so-called “shielding” effects) are expected to lead to very different collective behaviour compared to that of isolated droplets.

The student will join a lively and mutually supportive cohort of fellow PhD students within the Continuum Mechanics and Industrial Mathematics (CMIM) research group.

You should have (or expect to have) a UK Honours Degree (or equivalent) at 2.1 or above in Mathematics, Mathematics and Physics, Physics or a closely related discipline with a high mathematical content. Knowledge of Continuum Mechanics and mathematical methods (such as asymptotic methods) for the solution of partial differential equations is desirable (but not essential, particularly for overseas applicants).

Informal enquiries can be made to the lead supervisor, Professor Stephen K. Wilson, Department of Mathematics and Statistics, University of Strathclyde, Glasgow at and/or +44(0)141 548 3820. However, formal applications must be made via the online application procedure which can be found at

remembering to list the title of the project as “Mathematical Modelling and Analysis of Sessile Droplets” and Professor Stephen K. Wilson as the first supervisor. There is no need to include a detailed research plan, but a brief outline of your relevant experience (if any) and your motivation for choosing this project would assist with the selection procedure.

Funding Notes

This project will be supported by a Research Excellence Award (REA) Studentship funded by the University of Strathclyde with the support of the University of Edinburgh.

Unfortunately, funding rules mean that this studentship is only open to UK and EU students, and not to EEA or International students. Moreover, EU students are only eligible for the stipend element of the studentship if they have been resident in the UK for 3 years, including for study purposes, immediately prior to starting their PhD.

How good is research at University of Strathclyde in Mathematical Sciences?

FTE Category A staff submitted: 32.90

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.