Coventry University Featured PhD Programmes
University of Leeds Featured PhD Programmes
University of Lincoln Featured PhD Programmes

Mathematical Modelling of Biofilm Formation on Urinary Catheters


School of Science and Engineering

About the Project

This project aims to achieve a better understanding of catheter-associated urinary tract infections (CAUTIs) using a multidisciplinary approach centred on mathematical modelling. The longer term goal is to assist in the design of novel catheters coating that will lead to a reduction in the number of patients suffering from persistent CAUTIs and associated complications.

Urinary catheters are thin tubes inserted into the urinary tract to facilitate emptying of the bladder. CAUTIs presents a significant health problem worldwide and are associated with increased morbidity and mortality. CAUTIs account for about one third of all hospital-acquired infections and more than 1 million CAUTIs occur annually in the United States and Europe. In the UK CAUTIs are estimated to cost the NHS approximately £99M each year. Moreover, the treatment of CAUTIs relies on the extensive use of antibiotics and therefore has significant potential to contribute to antimicrobial resistance.

CAUTIs are initiated by bacterial cells adhering to the surface of the catheter and forming a biofilm. A biofilm is a community of bacteria encased within a self-produced extra-cellular matrix. These shielded, multi-cellular communities are highly resistant to anti-biotic treatments and physical removal. It is these twin advantages of their growth form that ensure biofilms are the cause of most persistent infections.

A further complication is that about a half of patients undergoing long-term catheterization will experience catheter encrustation and blockage. This problem is mainly caused by urease-producing bacteria that form a crystalline biofilm. Continued accumulation can eventually cause complete blockage of the catheter leading to painful distension of the bladder, septicaemia and shock.

Reducing the occurrence and/or severity of CAUTIs therefore has significant health benefits for the patient and is globally important in terms of public spend on health care.

This project will focus on the development of mathematical models for (i) biofilm formation on the surface of catheters and (ii) resultant encrustation. These are multi-scale problems and the aim is to understand the system in sufficient detail to allow for hypotheses to be set and tested regarding the effects of changing catheter surface properties. Both continuous and individual-based modelling frameworks will be employed. At the large scale, these must be capable of capturing flow, deposition and cells and subsequent biofilm formation and the formation of crystalline material. At the micro-scale, individual-based models will be employed to allow for a deeper investigation of the interaction of the adhered cells with the anti-biotic (micro-structured) surface of the catheter. Mathematical modelling and analysis will be supported by extensive numerical simulations. The development and testing of hypotheses will be conducted principally using the mathematical models, but wherever possible will be augmented by experiments using artificial urinary tracts in our laboratory.

For informal enquiries about the project, contact Professor Fordyce Davidson ()
For general enquiries about the University of Dundee, contact


QUALIFICATIONS
Applicants must have obtained, or expect to obtain, a first or 2.1 UK honours degree, or equivalent for degrees obtained outside the UK in a relevant discipline.

English language requirement: IELTS (Academic) score must be at least 6.5 (with not less than 5.5 in each of the four components). Other, equivalent qualifications will be accepted. Full details of the University’s English language requirements are available online: http://www.dundee.ac.uk/guides/english-language-requirements.


APPLICATION PROCESS

Step 1: Email Professor Fordyce Davidson () to (1) send a copy of your CV and (2) discuss your potential application and any practicalities (e.g. suitable start date).

Step 2: After discussion with Professor Davidson, formal applications can be made via UCAS Postgraduate. When applying, please follow the instructions below:

Apply for the Doctor of Philosophy (PhD) degree in Mathematics: https://digital.ucas.com/coursedisplay/courses/c1f40893-a92e-d5d9-e320-c079d444d740?academicYearId=2020. Select the start date and study mode (full-time/part-time) agreed with the lead supervisor.

In the ‘provider questions’ section of the application form:
- Write the project title and ‘FindAPhD.com’ in the ‘if your application is in response to an advertisement’ box;
- Write the lead supervisor’s name and give brief details of your previous contact with them in the ‘previous contact with the University of Dundee’ box.

In the ‘personal statement’ section of the application form, outline your suitability for the project selected.

Funding Notes

There is no funding attached to this project. The successful applicant will be expected to provide the funding for tuition fees and living expenses, via external sponsorship or self-funding.

References

Wang, L., Zhang, S., Keatch, R., Corner, G., Nabi, G., Murdoch, S., Davidson, F. & Zhao, Q., Sep 2019, In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters, Journal of Hospital Infection. 103, 1, p. 55-63.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Dundee will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.