Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Nowadays, researchers have started to conceptualize 6G with the vision of connecting everything, transmission over mmWave and THz, and integrating sensing, communication, computation, and control functionalities. To support such network evolution, the deployment of small and even tiny cells is further densified overlaying with the existing macro cellular networks. The resultant technical and network complexity puts considerable pressure on energy efficiency and sustainability.
Artificial intelligence (AI) and machine learning techniques have great potential to tackle the energy efficiency challenges in the future green 6G. AI methodologies, e.g., deep learning, federated learning and reinforcement learning, can be explored for the design and optimization of 6G architecture and network orchestration in a cost-efficient manner. By learning the complex network topology and the varying traffic pattern, AI could tame network complexity for the design of 6G air interfaces. The diversified 6G enabling applications, such as smart cities, smart grid, autonomous vehicles, and industrial automation, will make AI more far-reaching and essential in energy savings. On the other hand, AI and machine learning techniques usually demand high computation and communication. This may pose a significant challenge for the design and implementation of both machine learning algorithms and future 6G systems in an energy-efficient way. One advantage is that 6G's Gb-level transmission rate will possibly bring a radical paradigm shift for AI toward ubiquitous AI, taking advantage of distributed machine learning and edge intelligence.
Entry requirements:
Candidates should have (or expect to obtain) a minimum of a UK upper second class honours degree (2.1) or equivalent in Electronic and Electrical Engineering, Physics, Computer Science, Mathematics or a closely related subject.
How to apply:
Applicants should apply via the University’s online application system at https://www.york.ac.uk/study/postgraduate-research/apply/. Please read the application guidance first so that you understand the various steps in the application process.
Funding Notes

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in York, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Energy Efficient UAVs-aided Wireless Communication Networks
Manchester Metropolitan University
Algorithmic advances for energy-efficient robot swarms
University of Sheffield
Energy-harvesting based MAC protocols for Wireless Sensor Networks
University of York