FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW FREE Virtual Study Fair | 1 - 2 March | REGISTER NOW

Modelling and classifying concealed face recognition.

   Faculty of Natural Sciences

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr Ailsa Millen, Dr P J B Hancock  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Applications are invited for a self-funded PhD project to test and model factors that interact with correct classification of concealed face recognition. Concealed face recognition is that act of denying recognition of someone you know (e.g., perpetrators lie about knowledge of associates during criminal investigations, patients might fake amnesia to make fraudulent clinical claims). Concealed face recognition thus presents an important scientific and societal problem.

Traditional polygraph lie detection is unreliable; the critical nature of the question “Did you kill person x” is evident whether you are guilty or not. Innocent suspects may well respond more strongly than a guilty practised liar. Alternatively, the Concealed Information Test is the extensively validated for the detection of concealed knowledge (Ben-Shakhar & Elaad, 2003; Hira & Furumitsu, 2002; Meijer et al., 2014; Verschuere, Ben-Shakhar & Meijer, 2011). In Japan, approximately 5000 CITs are conducted each year using autonomic measures of recognition (e.g. skin conductance) based on knowledge of crime details. However to date, there has been little work evaluating the CIT for detecting recognition of faces (see Millen et al, 2017; Millen & Hancock, 2019; Millen, Hope & Hillstrom, 2020). Accordingly, there are unanswered questions about the reliability of implicit markers of recognition based on individual differences in memory performance, the ability to identify faces of other races, and central executive performance such as the ability to manage response conflict during lies.

This PhD project will combine the CIT with a range of methodological approaches (e.g., eye tracking, autonomic measures, EEG, neurocomputing) to clarify the relationship between cognitive processes, individual differences and implicit markers of concealed recognition for detection.

Application Requirements:
Eligible applicants should –
• Hold a Bachelor’s degree in Psychology, Computer Science and related fields. A relevant MSc qualification is desirable.
• Be analytical and comfortable with managing large data sets including biopsychology and psychophysiology data.
• Have confidence in using a statistical package such as R

Funding Notes

The PhD project is self-funded. Tuition fees are available at:


Ben-Shakhar, G., & Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: A meta-analytic review. Journal of Applied Psychology, 88(1), 131–151.

Hira, S., & Furumitsu, I. (2002). Polygraphic examinations in Japan: Application of the guilty knowledge test in forensic investigations. International Journal of Police Science and Management, 4(1), 16–27.

Meijer, E. H., Selle, N. K., Elber, L., & Ben-Shakhar, G. (2014). Memory detection with the Concealed Information Test: a meta analysis of skin conductance, respiration, heart rate, and P300 data. Psychophysiology, 51(9), 879–904.

Millen, A. E., Hope, L., & Hillstrom, A. P., (2020). Eye spy a liar: Assessing the utility
of eye fixations and confidence judgments for detecting concealed recognition of faces,
scenes and objects. Cognitive Research: Principles and Implications.

Millen A. E. & Hancock P. (2019) Eye see through you! Eye tracking unmasks concealed face recognition despite countermeasures. Cognitive Research: Principles and Implications, 4, Art. No.: 23.

Millen, A. E., Hope, L., Hillstrom, A. P., & Vrij, A. (2017). Tracking the truth: the
effect of face familiarity on eye fixations during deception. Quarterly Journal of
Experimental Psychology, 70:5, 930-943.

Verschuere, G. Ben-Shakhar, & E. Meijer (Eds.), Memory detection: Theory and application of the Concealed Information Test (p. 27–45). Cambridge University Press.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs