Attend the Virtual Global Study Fair | Register Now Attend the Virtual Global Study Fair | Register Now

Modelling the effect of the electric double layer on electron transfer kinetics

   Department of Chemical and Process Engineering

   Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Electron transfer between molecules in solution and a surface (e.g., a metallic electrode or semiconducting substrate) occurs in a wide variety of important areas, including catalysis, corrosion, electrodeposition, photochemistry, etc. The ability to model the electron transfer in these systems is fundamental for the design of practical processes, such as electroplating, fuel cells, catalytic reactors, to name a few. Ions located near a charged surface will lead to the formation of an electric double layer (EDL), which plays significant role in determining the equilibrium and kinetics of electron transfer. In recent years, tremendous advances have been made in the understanding of the EDL, in particular, the influence of charge correlations, which has led to intuitively surprising results, such as like-charge attraction or overcharging, that have been experimentally validated. Despite its importance, current models of electron transfer in solutions still use an overly simplistic description of the EDL.

This work will combine recent theories for the influence of charge correlations on the structure of the electric double layer with a simple quantum description of charge transfer to to develop a new model for electrochemical reactions. This will be used to model corrosion in order to develop strategies for its prevention.

In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.

Information about the host department can be found by visiting:

Funding Notes

This PhD project is initially offered on a self-funding basis. It is open to applicants with their own funding, or those applying to funding sources. However, excellent candidates will be eligible to be considered for a University scholarship.
Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.

Email Now

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs