Imperial College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
The University of Manchester Featured PhD Programmes
Cardiff University Featured PhD Programmes

Modelling the Fluid-Structure Interaction of membranes with anisotropic material properties to provide performance improvements

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  • Full or part time
    Dr J Knight
    Dr J Buick
    Dr H Dhakal
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Applications are invited for a fully-funded three year PhD to commence in October 2019.

The PhD will be based in the School of Mechanical and Design Engineering and will be supervised by Dr Jason Knight, Dr James Buick and Dr Hom Dhakal.

The work on this project will:
-enhance knowledge in performance and efficiency of highly flexible wing surfaces, which could be applied in aerospace and renewable energy industries
-enhance knowledge and design competitiveness in multiple applications as diverse as Micro Unmanned Aerial Vehicles to biomedical devices amongst many others


Project description

Flexible membrane surfaces such as parachutes, sails, insect wings and heart valves deform under fluid loading. The deformation is highly non-linear and has a strong dependence on initial conditions. The accuracy of such simulations has been difficult to achieve and is highly sensitive to the parameters used. Any small errors are amplified in subsequent simulations. This research will investigate in detail the parameters used in such simulations to assess sensitivities. The fluid-structure interaction will be obtained using CFD coupled with a structural code. Once successfully developed, the approach will be applied to a range of industrial applications.

Aeroelastic divergence and flutter are complex problems and continue to receive attention in research community (Akhaven and Ribeiro, 2018). Here, the flexural rigidity is dominant for such surfaces and this has been modeled accurately (Cisonni et al, 2017) and is also available and used in commercial codes (Ozcatalbas et al, 2018). However, for membranes, the induced tension is dominant and more unstable. We have an international reputation for applied research in behaviour and mechanics of advanced materials, including numerical studies of the deformation of flexible membrane surfaces to capture fluid-structure interactions (Knight et al, 2009, 2010). The techniques developed in these works will be extended to account for complex geometries and multi-directional material properties. The work can be exploited in many applications of industrial interest.

A parallel wind tunnel experimental program with use of digital image correlation and a separate tailored in-situ micro wind tunnel test within X-ray tomography equipment will be used to generate geometry for use in and to validate findings from the numerical studies. Furthermore, the assessment of a large number of design alternatives and parameters will be investigated for performance realisation and optimisation as well as the generation of scaling laws.

The work will enhance knowledge in performance and efficiency of highly flexible wing surfaces, which could be applied in aerospace and renewable energy industries. The work will also enhance knowledge and design competitiveness in multiple applications as diverse as Micro Unmanned Aerial Vehicle’s to biomedical devices amongst many others.



General admissions criteria
You’ll need a good first degree from an internationally recognised university (minimum upper second class or equivalent, depending on your chosen course) or a Master’s degree in Aeronautical, Mechanical or related engineering discipline . In exceptional cases, we may consider equivalent professional experience and/or Qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.


How to Apply

We’d encourage you to contact Dr Jason Knight ([Email Address Removed]) to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form and select ‘Mechanical and Design Engineering’ as the subject area. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process.


If you want to be considered for this funded PhD opportunity you must quote project code ENGN4930219 when applying.

Funding Notes

Candidates applying for this project may be eligible to compete for one of a small number of bursaries available.

Successful applicants will receive a bursary to cover tuition fees for three years and a stipend in line with the RCUK rate (£14,777 for 2018/2019). The Faculty of Technology may fund project costs/consumables up to £1,500 p.a.



FindAPhD. Copyright 2005-2019
All rights reserved.