Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  MRC DiMeN Doctoral Training Partnership: Gene replacement therapy for Syngap1 Syndrome


   MRC DiMeN Doctoral Training Partnership

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Mimoun Azzouz, Prof Guillaume Hautbergue  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Background

SYNGAP1 encodes the neuronal cytoplasmic protein SynGAP (SYNaptic GTPase Activating Protein), a regulatory protein involved in synaptic development, structure, function, and plasticity. Heterozygous mutations in SYNGAP1 gene lead to haploinsufficiency, resulting in a mental retardation-type 5 (MRD5), a disease characterised by intellectual disability (ID), developmental delay, epilepsy, autism spectrum disorder and other behavioural abnormalities. SYNGAP1 loss-of-function is one of the most common causes of ID with epilepsy. 

Objectives

Given the remarkable pre-clinical and clinical efficacy mediated by adeno-associated virus serotype 9 (AAV9)1,2, our goal is to design and progress AAV9 gene therapy strategy for SYNGAP1 replacement towards proof-of-concept in pre-clinical model of MRD5. Our specific aims are: i) Design and evaluate therapeutic vectors; ii) Evaluate the in vitro efficacy of the therapeutic vector system in iPSC derived neurons; iii) complete a proof-of-concept efficacy stydy in pre-clinical in vivo model of MRD5.

Novelty

MRD5 patients currently have no treatment options. Our Syngap1 gene replacement strategy is an attractive solution since it is targeting the causative gene. No previous studies of syngap1 gene replacement therapy have been reported.

 

Experimental Approach

1)     AAV vector design and production: Currently, the adeno-associated (AAV)-based system is one of the most refined and effective gene delivery systems. Remarkable safety and efficacy data were reported from 2 separate phase I/II clinical trials in patients with rare diseases1,3. We plan to design AAV encoding codon optimised human SYNGAP1 gene.  

2)     In vitro validation of the therapeutic vector using iPS-derived neurons from SYNGAP1 patients. A number of readouts will be used as demonstrated in a recent study utilising this cell model.4

3)     Pilot in vivo study: This will be performed in wild type mice to assess transduction efficiency of the generated AAV vector and select the dose for pre-clinical study in MRD5 mouse model.

4)     Pre-clinical proof-of concept using in vivo disease model. The efficacy of the selected AAV will then be tested in vivo using the well characterised Syngap1 heterozygous model (Syngap1+/−). Syngap1+/− model display significant phenotype recapitulating many features of the disease in humans.

 

Training opportunities

The student will join a team of several postdocs, PhD students and technicians. He/she will benefit from their support and expertise. The student will use/learn cell culture, basic molecular biology techniques, viral vector design, disease modelling, immunostaining, microscopy and in vivo pre-clinical expertise. Gene manipulation in the cell models will be achieved using lentiviral and adeno-associated vectors. The student will also be affiliated to the Gene Therapy Innovation and Manufacturing Centre (GTIMC). GTIMC is currently a DiMeN DTP Associate Partner. The newly established centre has signed an agreement with Cell & Gene Therapy Catapult allowing Technology Transfer of analytical assays to be used for gene therapy product characterisation. The Tech transfer is scheduled to start in January 2022. The student will use the assays to characterise the Syngap1 vectors generated under this project. He/She will generate data key to establish future partnerships with industry

Website links

Link 1: http://sitran.org/people/azzouz/

Link 2: www.ardat.org

Link 3: https://uk.linkedin.com/in/mimoun-azzouz-9b7221a4

Benefits of being in the DiMeN DTP:

This project is part of the Discovery Medicine North Doctoral Training Partnership (DiMeN DTP), a diverse community of PhD students across the North of England researching the major health problems facing the world today. Our partner institutions (Universities of Leeds, Liverpool, Newcastle, York and Sheffield) are internationally recognised as centres of research excellence and can offer you access to state-of the-art facilities to deliver high impact research.

We are very proud of our student-centred ethos and committed to supporting you throughout your PhD. As part of the DTP, we offer bespoke training in key skills sought after in early career researchers, as well as opportunities to broaden your career horizons in a range of non-academic sectors.

Being funded by the MRC means you can access additional funding for research placements, international training opportunities or internships in science policy, science communication and beyond. See how our current DiMeN students have benefited from this funding here: http://www.dimen.org.uk/overview/student-profiles/flexible-supplement-awards

Further information on the programme and how to apply can be found on our website:

http://www.dimen.org.uk/how-to-apply/application-overview 

Biological Sciences (4) Medicine (26)

Funding Notes

Studentships are fully funded by the Medical Research Council (MRC) for 4yrs. Funding will cover UK tuition fees, stipend and project costs as standard. We also aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will be awarded to exceptional candidates only, due to the competitive nature of this scheme. Please read additional guidance here: http://www.dimen.org.uk/how-to-apply/eligibility-funding
Studentships commence: 1st October 2022
Good luck!

References

1. N Engl J Med. 377: 1713-22, 2017. DOI: 10.1056/NEJMoa1706198
2. Sci. Transl. Med. 2: 35ra42, 2010. DOI: 10.1126/scitranslmed.3000830
3. N Engl J Med. 377: 2215-27, 2017. DOI: 10.1056/NEJMoa1708538
4. J. Neurosci 40(41):7980-7994, 2020. DOI: 10.1523/JNEUROSCI.1367-20.2020

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.