Imperial College London Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Reading Featured PhD Programmes

MRC DiMeN Doctoral Training Partnership: Understanding the role of DRAM in infection and autophagy-related disease

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr J King
    Dr P Elks
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Intracellular degradation by lysosomes is important in a wide range of diseases. The capture and degradation of cytoplasmic components by autophagy allows tumour cells to survive starvation and neurons to remove the protein aggregates associated with neurodegeneration. The lysosomes which mediate this degradation also enable immune cells to kill pathogens and therefore suppress infections.

The aim of this project is to understand how lysosomes are regulated to protect cells from pathogens, starvation and misfolded proteins. Specifically, we want to understand the role of the protein DRAM (Damage Regulated Autophagy Modulator), an important lysosomal protein implicated in several diseases. In cancer, DRAM1 mediates regulation of autophagy and cell death by the tumour suppressor p53, and is decreased in many primary tumours. DRAM upregulation also aids the clearance of intracellular bacteria during models of tuberculosis infection. However, how DRAM regulates lysosomal activity and autophagy is unknown.

This project will use a combination of Dictyostelium and zebrafish models to understand how autophagy and pathogen killing is regulated at both the cellular and whole-organism levels. This will provide important new insight into the function of this key disease related protein and the underlying biology of how cells protect themselves.

You, the student, will be trained in a unique combination of both cell biology and in vivo techniques to take advantage of both cellular and zebrafish models of phagocyte biology and mycobacterial infection. This will include molecular biology techniques (CRISPR, protein fusions and overexpression), biochemistry, proteomics and live cell microscopy using the cutting-edge facilities at Sheffield. You will be part of a friendly, well-funded and successful team with extensive technical expertise, and will be encouraged to take advantage of the wealth of training opportunities offered by the MRC DiMEN doctoral training programme.

Further information on our research groups can be found on our lab webpages:
Jason King lab:, @jasonkinglab
Phil Elks lab:, @elkslab_sheff

Starting a PhD is an exciting time, and a substantial 3.5-year commitment. If you are interested, we would strongly recommend getting in contact for an informal chat first to get a better feel for the project and any help you might need with the application.

Benefits of being in the DiMeN DTP:
This project is part of the Discovery Medicine North Doctoral Training Partnership (DiMeN DTP), a diverse community of PhD students across the North of England researching the major health problems facing the world today. Our partner institutions (Universities of Leeds, Liverpool, Newcastle and Sheffield) are internationally recognised as centres of research excellence and can offer you access to state-of the-art facilities to deliver high impact research.
We are very proud of our student-centred ethos and committed to supporting you throughout your PhD. As part of the DTP, we offer bespoke training in key skills sought after in early career researchers, as well as opportunities to broaden your career horizons in a range of non-academic sectors.

Being funded by the MRC means you can access additional funding for research placements, international training opportunities or internships in science policy, science communication and beyond. See how our current DiMeN students have benefited from this funding here:
Further information on the programme can be found on our website:

Funding Notes

Studentships are fully funded by the Medical Research Council (MRC) for 3.5yrs
Stipend at national UKRI standard rate
Tuition fees
Research training and support grant (RTSG)
Travel allowance
Studentships commence: 1st October 2020.

To qualify, you must be a UK or EU citizen who has been resident in the UK/EU for 3 years prior to commencement. Applicants must have obtained, or be about to obtain, at least a 2.1 honours degree (or equivalent) in a relevant subject. All applications are scored blindly based on merit. Please read additional guidance here:

Good luck!


DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. Cell. 2006 Jul 14;126(1):121-34.

The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLP-MYD88 to authophagic defense. Van Der Vaart, M., Korbee, C. J., Lamers, G. E. M., Tengeler, A. C., Hosseini, R., Haks, M. C., … Meijer, A. H. (2014). Cell Host and Microbe. 2014. 15(6), 753-767.

PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection CM Buckley, VL Heath, A Gueho, C Bosmani, P Knobloch, P Sikakana, N Personnic, SK Dove, RH Michell, R Meier, H Hilbi, T Soldati, RH Insall† and JS King†. PloS pathogens. 15 (2), e1007551

How good is research at University of Sheffield in Allied Health Professions, Dentistry, Nursing and Pharmacy?
Biomedical science

FTE Category A staff submitted: 64.66

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2020
All rights reserved.