University of Edinburgh Featured PhD Programmes
University of Leeds Featured PhD Programmes
University of Exeter Featured PhD Programmes

MRC DiMeN Doctoral Training Partnership: Using targeted protein degradation to analyse the gene expression mechanisms that drive breast cancer

MRC DiMeN Doctoral Training Partnership

Newcastle United Kingdom Biochemistry Cancer Biology Cell Biology Genetics Molecular Biology Pathology

About the Project

Altered gene expression patterns can drive cancer progression. While changes in transcription can turn key genes on and off, splicing – by which different exons can be included into mRNAs, can affect gene function. The RNA splicing regulator Tra2β is often up-regulated in breast cancer, correlating with decreased patient survival. This project will interrogate the function of Tra2β using a new technique that can direct rapid, targeted protein degradation in vivo within breast cancer cells. This will enable us to identify the very first changes in gene expression patterns, and answer if these occur at the level of splicing, transcription or both. We predict these pathways are important: Tra2β depletion with siRNA kills the MDA-MB-231 breast cancer cell line that models triple negative metastatic disease.

In the longer term the gene expression targets of Tra2β in breast cancer that we will identify are potentially useful drug targets.

Training: This project will deliver training in global gene expression analysis (using –omic level bioinformatics skills), cell culture and genome engineering (adding degrons onto the Tra2b gene and CRISPR knockout).

Elliott lab web page
Elliott lab twitter account:
Stuart Wilson Webpage:

Benefits of being in the DiMeN DTP:
This project is part of the Discovery Medicine North Doctoral Training Partnership (DiMeN DTP), a diverse community of PhD students across the North of England researching the major health problems facing the world today. Our partner institutions (Universities of Leeds, Liverpool, Newcastle and Sheffield) are internationally recognised as centres of research excellence and can offer you access to state-of the-art facilities to deliver high impact research.
We are very proud of our student-centred ethos and committed to supporting you throughout your PhD. As part of the DTP, we offer bespoke training in key skills sought after in early career researchers, as well as opportunities to broaden your career horizons in a range of non-academic sectors.

Being funded by the MRC means you can access additional funding for research placements, international training opportunities or internships in science policy, science communication and beyond. See how our current DiMeN students have benefited from this funding here:

Further information on the programme and how to apply can be found on our website:

Funding Notes

Studentships are funded by the Medical Research Council (MRC) for 3.5yrs. Funding will cover UK tuition fees and stipend only. We aim to support the most outstanding applicants from outside the UK and are able to offer a limited number of bursaries that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme. Please read additional guidance here: View Website

Studentships commence: 1st October 2021

Good luck!


Co-transcriptional Loading of RNA Export Factors Shapes the Human Transcriptome. Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA.Viphakone N, et al. Mol Cell. 2019 Jul 25;75(2):310-323.e8.

Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. Munkley J, Li L, Krishnan SRG, Hysenaj G, Scott E, Dalgliesh C, Oo HZ, Maia TM, Cheung K, Ehrmann I, Livermore KE, Zielinska H, Thompson O, Knight B, McCullagh P, McGrath J, Crundwell M, Harries LW, Daugaard M, Cockell S, Barbosa-Morais NL, Oltean S, Elliott DJ. Elife. 2019 Sep 3;8:e47678. doi: 10.7554/eLife.47678

Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons. Best A, James K, Dalgliesh C, Hong E, Kheirolahi-Kouhestani M, Curk T, Xu Y, Danilenko M, Hussain R, Keavney B, Wipat A, Klinck R, Cowell IG, Cheong Lee K, Austin CA, Venables JP, Chabot B, Santibanez Koref M, Tyson-Capper A, Elliott DJ. Nat Commun. 2014 Sep 11;5:4760. doi: 10.1038/ncomms5760.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to Newcastle University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2021
All rights reserved.