Imperial College London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Imperial College London Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
Max Planck Society Featured PhD Programmes

MRC DTP 4 Year PhD Programme: Cell biology of a bacterial nano-weapon

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr S Coulthurst
    Dr Colin Rickman
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

About This PhD Project

Project Description

This project is part of our exciting and challenging University of Dundee 4-year MRC DTP Programme in Quantitative and Interdisciplinary approaches to biomedical science. This PhD programme brings together leading experts from the School of Life Sciences (SLS), the School of Medicine (SoM) and the School of Science and Engineering (SSE) to train the next generation of scientists at the forefront of international science. Further information on the programme structure and training can be found at

Many bacterial pathogens use the Type VI secretion system (T6SS) nanomachine to fire diverse, toxic ‘effector’ proteins directly into target cells. It is becoming increasingly apparent that the T6SS plays a key role in the virulence and competitiveness of diverse Gram-negative bacteria, including important human pathogens. Pathogens can use T6SSs to directly target eukaryotic organisms, as classical virulence factors. Alternatively, many pathogens can use T6SSs to target other bacterial cells, killing or inhibiting rivals. ‘Anti-bacterial’ T6SSs thus provide a competitive mechanism to allow pathogens to proliferate in polymicrobial infection sites or environmental reservoirs and ultimately cause disease. Understanding how the T6SS is deployed and the lethal consequences of its effectors on targeted bacterial cells therefore offers the potential to uncover new ways to kill or inhibit bacterial pathogens.

This project aims to develop and utilise advanced fluorescence microscopy and image analysis methodologies to better understand how the T6SS is deployed and the consequences of specific effectors on targeted bacterial cells. In previous work, we have shown that the potent anti-bacterial T6SS of an opportunistic pathogen, Serratia marcescens, is deployed in an offensive manner and delivers multiple anti-bacterial toxins. Furthermore, we and others have shown that single cell microscopy approaches allow visualisation of the T6SS structure, firing events, and the subsequent impact on target cells. In this project, we will further investigate how the T6SS is deployed, using a combination of genetic, biochemical, high- and super-resolution microscopy and image analysis methods. Additionally we will elucidate the consequences of an individual T6SS-delivered anti-bacterial effector protein on the targeted bacterial cell, again by combining state-of-the-art single cell imaging with complementary genetic and molecular analyses.

FindAPhD. Copyright 2005-2019
All rights reserved.