Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Liverpool Featured PhD Programmes
University of Oxford Featured PhD Programmes
University College London Featured PhD Programmes
Bournemouth University Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes

MRC DTP 4 Year PhD Programme: Revealing dynamic and elusive early-mitotic events using state-of-the-art live-cell light sheet imaging

About This PhD Project

Project Description

This project is part of our exciting and challenging University of Dundee 4-year MRC DTP Programme in Quantitative and Interdisciplinary approaches to biomedical science. This PhD programme brings together leading experts from the School of Life Sciences (SLS), the School of Medicine (SoM) and the School of Science and Engineering (SSE) to train the next generation of scientists at the forefront of international science. Further information on the programme structure and training can be found at

To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite spindle poles during mitosis. This process has important medical relevance because chromosome mis-segregation plays causative roles in human diseases such as cancers and congenital diseases. To prepare for proper chromosome segregation, kinetochores – the spindle attachment sites on chromosomes – must correctly interact with spindle microtubules (MTs) during early mitosis. It has been challenging to study these initial interactions because the dynamics of this process are complex, and the kinetochores and microtubules are densely packed and hard to distinguish.

This research project will analyse these early kinetochore–MT interactions, in human cells, in far greater detail than has been achieved previously. To achieve this we will use a state-of-the-art Tri-SPIM light sheet microscope [1] that is capable of obtaining and analyzing fluorescent images of mitosis in live cells with high spatial and temporal resolution, excellent signal-to-noise and with minimal photo-damage to the dividing cells. These challenging imaging conditions are crucial to obtaining information about these vital and extremely dynamic early events in mitosis. The Tri-SPIM light sheet microscopy system has been recently implemented at our institute. This is the ideal system to fulfill the above imaging conditions.

In this project, the student will use the Tri-SPIM microscope to analyze kinetochore–MT interaction in human cells, under the supervision of Tanaka and MacDonald. Tanaka is an expert in chromosome segregation and kinetochore–MT interaction [2], while MacDonald is an expert in light sheet imaging [3]. Throughout this project, the student will learn basic and advanced techniques in cell and molecular biology as well as applications of state-of-the-art live-cell light sheet microscopy.



[1] Wu, Y., Chandris, P., Winter, P.W., Kim, E.Y., Jaumouillé, V., Kumar, A., Guo, M., Leung, J.M., Smith, C., Rey-Suarez, I., et al. (2016). Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 897-910.

[2] Kalantzaki, M., Kitamura, E., Zhang, T., Mino, A., Novak, B., and Tanaka, T.U. (2015). Kinetochore-microtubule error correction is driven by differentially regulated interaction modes. Nat Cell Biol. 17, 421-433.

[3] Rozbicki, E., Chuai, M., Karjalainen, A.I., Song, F., Sang, H.M., Martin, R., Knolker, H.J., MacDonald, M.P., and Weijer, C.J. (2015). Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nature Cell Biol 17, 397-408.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2018
All rights reserved.