Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Bristol Featured PhD Programmes
Imperial College London Featured PhD Programmes
University College London Featured PhD Programmes
University of Edinburgh Featured PhD Programmes
Max Planck Society Featured PhD Programmes

MRC Precision Medicine DTP: Developing Personalised Precision Medical Approaches for Paediatric Intensive Care


Project Description

Title - Developing Personalised Precision Medical Approaches for Paediatric Intensive Care through Data Informatics Research on the Impact of Acute Clinical and Physiological Phenotypes on Outcome and Health Economics

Background
Routine clinical practice generates a large amount of data that is under-used for research and quality improvement[1]. This is particularly true in paediatric intensive care units (PICU) across the world. Every PICU patient routinely has multi-parameter bedside physiological monitoring data in at least minute-by-minute resolution collected throughout their PICU stay. But yet once the patient is discharged, vital information from this physiological big data is discarded rather than being used to advance our understanding of how a patient’s physiological phenotype may affect outcome, quality of life, and the health economics of PICU practice. Lack of linkage to other data sources collected during routine clinical care (e.g. radiological images, outcome such as re-admission following index PICU admission) prevents meaningful use of this physiology data to advance patient care and safety. We urgently need to utilise data science research and innovation on the integrated massive amount of data generated from different sources during routine patient care to develop precision medical approaches for critical care to deliver continuously improved patient care and outcome.

The usefulness of a data intensive informatics approach to advance life-threatening traumatic brain injury (TBI) intensive care management is demonstrated by our BrainIT and GBINARy groups and the KidsBrainIT initiative in adults and children respectively. Applying data science research to ‘big data’ generated through ICU care of TBI patients of all ages in multiple ICU across different countries, our research consortium has successfully defined clinical and physiological phenotypes associated with an improved global neurological outcome[2,3]. We now need to better understand the impact of physiological phenotypes on structural and functional outcome in critically brain injured paediatric patients in order to improve their quality of life.

Advanced radiological imaging modalities (e.g CT and MRI) used in the clinical management of life-threatening TBI allows detection of structural abnormalities offering prognostic information and structural outcome assessment. Unplanned re-admission or emergency service presentation following PICU discharge is a proxy measure of poorer quality of life[4]. Linking ICU clinical and physiological data with routine radiological images, unplanned hospital re-admission, or emergency service presentation from the community offer a valuable opportunity to better understand changes to the brain’s structure, functional ability, and quality of life following TBI at an individual patient level, leading the way for not only significant advances in understanding of TBI but also therapeutic strategies which can be tailored to an individual patient. Furthermore, this data driven and linkage informatics approach for research in critically brain-injured patients may be extended to include all patients in ICU regardless of the disease process and age. Having novel personalised therapies in ICU will have health economic implications and warrants investigation.

Aims
This collaborative project between two data-intensive informatics groups aims to test hypotheses regarding how clinical, physiological and radiological (structural) phenotypes in paediatric patients with life-threatening brain trauma affect the brain’s ability to auto-regulate blood flow and outcome (including functional screening, unplanned re-admissions etc). We additionally aim to use this as a stepping-stone to expand the application of data driven and linkage informatics approach to research beyond brain trauma within the critical care setting.

Training outcomes
We provide a unique opportunity for the student to apply their developed quantitative and interdisciplinary skills to a variety of data types and sources. Specifically:
Digital Excellence
· Understanding of the data collection environment in intensive care units.
· Experience with ‘big data’ including data linkage technologies and platforms.
Quantitative
· Health economics analyses
· Medical informatics
· Time-series routinely collected clinical bedside physiological data analysis skills.
Interdisciplinary
· Domain Knowledge in paediatric critical care pathophysiology including those with TBI (clinical / physiological ‘phenotypes’).
· Imaging analyses.
· Development of personalised precision medicine for paediatric critical care.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
This MRC programme is joint between the Universities of Edinburgh and Glasgow. You will be registered at the host institution of the primary supervisor detailed in your project selection.

All applications should be made via the University of Edinburgh, irrespective of project location:

http://www.ed.ac.uk/studying/postgraduate/degrees/index.php?r=site/view&id=919

Please note, you must apply to one of the projects and you should contact the primary supervisor prior to making your application. Additional information on the application process if available from the link above.

For more information about Precision Medicine visit:

http://www.ed.ac.uk/usher/precision-medicine

Funding Notes

Start: September 2019

Qualifications criteria: Applicants applying for a MRC DTP in Precision Medicine studentship must have obtained, or will soon obtain, a first or upper-second class UK honours degree or equivalent non-UK qualifications, in an appropriate science/technology area.

Residence criteria: The MRC DTP in Precision Medicine grant provides tuition fees and stipend of at least £14,777 (RCUK rate 2018/19) for UK and EU nationals that meet all required eligibility criteria.

Full eligibility details are available: View Website

Enquiries regarding programme:

References

[1]Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med 2013. 187(11): 1157-1160.

[2]Güiza F, Meyfroidt G, Lo TYM, Jones PA, et al. Continuous optimal CPP based on minute-by- minute monitoring data: a study on a pediatric population. Acta Neurochir 2016. 122: 187-191.
[3]Guiza F, Depreitere B, Piper I et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Medicine 2015. 41(6): 1067-1076.

[4]Donaghy E, Salisbury L, Lone N, Lee R et al. Unplanned early hospital readmission among critical care survivors: a mixed methods study of patients and carers. BMJ Quality & Safety 2018. (http://dx.doi.org/10.1136/bmjqs-2017-007513)

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2018
All rights reserved.