Coventry University Featured PhD Programmes
The University of Manchester Featured PhD Programmes
University of Kent Featured PhD Programmes
The Francis Crick Institute Featured PhD Programmes
Cardiff University Featured PhD Programmes

Multi-scale patterning and nonlinear behaviours of smart materials (Advert Reference: SF18/MCE/CHEN)

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Smart materials are materials exhibiting multi-physics coupling behaviours. So they can be actuated by various physical fields, such as stress field, thermal field, electric field and magnetic field. Many applications have been found in these materials, e.g. sensors, actuators, energy harvesters and cooling systems. The traditional smart materials such as piezoelectric materials usually have small linear coupling. As a result, they can only exhibit very small strain (~ 0.1%) when actuated by physical fields. In contrast, the recent advanced smart materials such as conventional/magnetic shape memory alloys/polymers have much larger strain (~ 10%), more heat conversion, and much stronger couplings like ferro-elasticity, ferro-magnetism and ferro-electricity. These strong couplings usually induce the formations of multi-scale patterns in the materials, which lead to the global nonlinear behaviours.

The primary goal of this PhD project is to understand the physical mechanisms coupling the multi-physics behaviours for smart materials, unveil the relationship between the global nonlinear behaviours and the multi-scale patterns, and propose design guidelines for smart materials and structures.

Please note eligibility requirement:

* Academic excellence of the proposed student i.e. 2:1 (or equivalent GPA from non-UK universities [preference for 1st class honours]) in Mechanical Engineering or Material Science; or a Masters (preference for Merit or above); or APEL evidence of substantial practitioner achievement.
* Appropriate IELTS score, if required

This project is well suited to motivated and hard-working candidates with a keen interest in smart materials and future engineering. The applicant should have excellent communication skills including proven ability to write in English.

For further details of how to apply, entry requirements and the application form, see

Please note: Applications that do not include a research proposal of approximately 1,000 words (not a copy of the advert), or that do not include the advert reference (e.g. SF18/MCE/CHEN) will not be considered.

Start Date: 1 March 2019 or 1 June 2019 or 1 October 2019

Northumbria University takes pride in, and values, the quality and diversity of our staff. We welcome applications from all members of the community. The University hold an Athena SWAN Bronze award in recognition of our commitment to improving employment practices for the advancement of gender equality and is a member of the Euraxess network, which delivers information and support to professional researchers.

Funding Notes

This is an unfunded research project


• Zhang, S., Chen, X., Moumni, Z., He, Y., 2018a. Coexistence and compatibility of martensite reorientation and phase transformation in high-frequency magnetic-field-induced deformation of Ni-Mn-Ga single crystal. International Journal of Plasticity, accepted, DOI:
• Zhang, S., Chen, X., Moumni, Z., He, Y., 2018b. Thermal effects on high-frequency magnetic-field-induced martensite reorientation in ferromagnetic shape memory alloys: an experimental and theoretical investigation. International Journal of Plasticity 108, 1−20.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.