Looking to list your PhD opportunities? Log in here.
About the Project
With the world population expected to reach 8.5 billion by 2030 and 9.7 billion by 2050, the demand for food and agricultural products will rise significantly in the coming years. In order to meet this requirement without significant impact on the environment, the agricultural sector will need to develop new innovative solutions that increase production efficiency using the same land resources. Decision support tools for Precision Agriculture that enable farmers to take informed actions based on more accurate and relevant data are therefore essential. Aerial imaging of farms from satellites, planes and drones can provide useful information to enable precise soil mapping and crop classification, enhance crop yield and manage fertiliser application. Combined with a network of sensors on the ground that yield granular data on soil conditions, these data streams constitute the base to assess the state of the farm continuously and predict future outcomes early in the season. However, individual sensors generally show limitations in terms of spatial and temporal resolution due to reduced availability of data, affordability, and the effect of adverse weather conditions. This restricts the ability of models based on a single source of data to produce reliable predictions of the performance of farms at the early stages of crop life.
The aim of the project is to investigate the use of Machine Learning and Deep Learning methods for the analysis and fusion of data streams to derive consistent and reliable information for farm management. The main challenge will be to integrate the different spatio-temporal resolutions of the data into accurate solutions for farmers. Through continuous engagement with key industrial partners, the project will ensure the relevance of the research and will catalyse the ongoing revolution in the agricultural sector.
In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.
Information about the host department can be found by visiting:
http://www.strath.ac.uk/engineering/chemicalprocessengineering
http://www.strath.ac.uk/courses/research/chemicalprocessengineering/
Funding Notes
Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.
Knowledge and/or experience in data analytics, data fusion, machine learning, programming skills (e.g. Python, Matlab, PyTorch/TensorFlow), multispectral/hyperspectral imaging and agricultural systems are desirable.
Email Now
Why not add a message here
The information you submit to University of Strathclyde will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Advancing Precision Medicine for Dementia: A Machine Learning Approach to Diagnosis and Treatment (SAMIS_U23SF )
University of East Anglia
Machine learning for video quality evaluation
Kingston University
Big Data and Machine Learning for Reaction Design
University of Bath