Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
The project involves fabricating quasicrystalline metamaterials at multiple scale lengths (microns to mm) using 3-d printing methodologies and investigating the propagation of photons through these materials, seeking for possible applications in photonics. This will be an experimental PhD that will start with the study of the most suitable manufacturing techniques available, the design of complex structures for wave propagation (i.e. quasicrystals REF) and materials selection (Yr1). The second stage will deal with manufacturing (Yr2), characterization and testing (Yr3).
Qualifications: A 2:1 or higher degree or equivalent in Materials Science, Physics, Chemistry or Engineering, with a strong interest in Materials Science and Manufacturing. The candidate will be expected to have previous experimental expertise and a background in Materials is highly desirable.
The studentship, jointly funded between the School of Engineering (50%) and the School of Physical Sciences (50%), will be supervised by Dr Esther García-Tuñón (MIF Lecturer in Materials Science and Engineering affiliated to the School of Engineering) and co-supervised by Prof Ronan McGrath and Dr Hem Raj Sharma in the Physics Department, School of Physical Sciences.
Funding Notes
References
[2] V. G. Rocha, E. Garcı́a-Tuñón, F. Markoulidis, E. Feilden, E. D'Elia, N. Ni, M. S. P. Shaffer, E. Saiz, ACS Appl. Mater. Interfaces 2017, 9, 37136.
[3] E. García-Tuñón, E. Feilden, H. Zheng, E. D'Elia, A. Leong, E. Saiz, ACS Appl. Mater. Interfaces 2017, 9, 32977.
[4] E. Garcı́a-Tuñón, S. Barg, J. Franco, R. Bell, E. D'Elia, R. C. Maher, F. Guitián, E. Saiz, Advanced Materials 2015, 27, 1688.
[5] S. Coates, J. A. Smerdon, R. McGrath and H. R. Sharma, Nature Communications 9, 3435 (2018)