Meet over 65 universities on 27 & 28 April GET YOUR FREE TICKET >
University of Portsmouth Featured PhD Programmes
Anglia Ruskin University ARU Featured PhD Programmes

Network interactions shape the circadian clock in Drosophila melanogaster


Department of Genetics and Genome Biology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
Dr E Rosato , Prof C P Kyriacou No more applications being accepted Competition Funded PhD Project (European/UK Students Only)

About the Project

The circadian clock is an endogenous mechanism that synchronizes almost all behaviour and physiology with the Earth’s 24 hour environmental cycles. Predictably, the circadian clock has a huge impact on health and quality of life. Dysfunction of the clock not only generates temporal disorientation and sleep problems, but also is involved in pathologies such as obesity, mental illness, cardiovascular disease and cancer. Clearly, it is extremely important to achieve a comprehensive understanding of how the circadian clock works [reviewed in 1].

The fruitfly Drosophila melanogaster is an ideal organism for the study of circadian rhythms, its clock shares its design and molecular components with that of mammals but it is much easier to manipulate.

In a recent breakthrough, we discovered that different clock neurons in the fly tend to cycle with different speeds and that only their mutual synchronization keeps the fly running with a common 24 h cycle [2]. Consequently, we cannot understand the oscillator by focusing only on the regulation of genes and molecules in single neurons but we must investigate the organization of the clock network as a whole.

This proposal aims to study the circadian clock in terms of network organization. We will use a combination of classic and original approaches. We will analyse the cycling of clock proteins in different neurons, but we will also develop novel markers of neuronal activity that are better suited than available tools to circadian experiments. Moreover, we will study classic mutants and widely used mosaics (GAL4/UAS lines) but we will also develop our own mutants and mosaics, for instance using CRISPR/CAS9 a state-of-the-art genome-editing tool. We envisage that our work will provide a new framework for a fuller comprehension of the biology of the circadian clock of Drosophila, but will also generate novel tools that will be useful for studying circadian clocks in general.

Eligibility:
UK/EU applicants only.

Entry requirements:
Applicants are required to hold/or expect to obtain a UK Bachelor Degree 2:1 or better in a relevant subject.
The University of Leicester English language requirements apply where applicable: https://le.ac.uk/study/research-degrees/entry-reqs/eng-lang-reqs/ielts-65

How to apply:
To apply for the PhD please refer to the guidelines and use the application link at https://le.ac.uk/study/research-degrees/funded-opportunities/bbsrc-mibtp
Please also submit your MIBTP notification form at https://warwick.ac.uk/fac/cross_fac/mibtp/pgstudy/phd_opportunities/application/


Project / Funding Enquiries: [Email Address Removed]
Application enquiries to [Email Address Removed]


Funding Notes

4 year fully funded BBSRC MIBTP studentship
UK/EU fees and stipend at UKRI rates. For 2020 this will be £15,285 pa

References

1. Ozkaya & Rosato (2012) The circadian clock of the fly: a neurogenetics journey through time. Advances in Genetics, 77: 79-123.

2. Dissel S, Hansen CN, Ozkaya O, Hemsley M, Kyriacou CP, Rosato E. (2014) The logic of circadian organization in Drosophila, Curr Biol, 24: 2257-2266
Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.