Meet over 65 universities on 27 & 28 April GET YOUR FREE TICKET >
Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

New light-responsive electrolytes for energy conversion


School of Engineering

About the Project

In this PhD project, we will develop new electrolytes with high ionic conductivity to increase the efficiency of fuel cells and batteries.

We will prepare new liquid crystalline polymers containing polar groups, and we will characterise their physic-chemical properties. We will then determine their conductivity, and we will evaluate the exciting possibility to use light as a way to further activate ionic conductivity.

The outcomes will open new fields to obtain advanced materials as electrolytes in energy conversion and storage technologies, contributing to decarbonise our economies.

Fuel cells have high efficiency, generate low levels of emissions, and can consume renewable sources. Fuel cells generate electricity from chemical energy via oxidation of a fuel at the anode, and reduction of oxygen at the cathode [1]. At low temperatures, hydrogen is used as a fuel, and a polymeric proton exchange membrane acts as the electrolyte that conducts protons and separate the electrodes.

The main aim of this PhD project is to prepare and test new liquid crystals with high ionic/proton conductivity, for their application as electrolytes in fuel cells in the absence of solvents. This will allow us to operate at higher temperatures and yield higher efficiencies [2], to increase operation flexibility, to use cheaper catalysts less sensitive to poisoning (e.g., CO), and to reduce fuel crossover in fuel cells.

Proton transport can be achieved by structural diffusion between molecules via the formation of hydrogen bonds [3]. Liquid crystals have local molecular mobility, which can facilitate the diffusion of ions in the short-range, and simultaneously sustain long-range order, which can promote efficient ionic transport from anode to cathode [4].

In our group at the University of Aberdeen, we have shown that liquid crystal polymers can exhibit ionic conductivities in the dc~10-4 S·cm-1 range [5]. Even though these values fall below the dc~0.1 S cm-1 conductivity typical of Nafion, the new materials are promising candidates to achieve ionic conductivities in the absence of solvents. The results also suggest that ionic conductivity can be enhanced by the application of UV-light, by promoting photoisomerisation of azobenzene (light-responsive) groups.

In this PhD, we will investigate new mechanisms for ionic conductivity of liquid crystals, by achieving the following objectives:

- Preparation of new liquid crystal electrolytes with light-responsive elements, including azobenzenes and sulfonic acid groups.

- Physic-chemical characterisation of the electrolytes, by using thermal analysis (differential scanning calorimetry, DSC, polarised optical microscopy, POM), UV-visible spectrophotometry and infrared spectroscopy (FT-IR).

- Determination of the ionic conductivity by electrochemical impedance spectroscopy, EIS. Effect of light irradiation on charge transport using transparent electrodes.

Some activities will be performed in collaboration with the Department of Chemistry (University of Aberdeen), and the University of Zaragoza (Spain). The outcomes will be published in different high impact journals of the areas of materials science, engineering, chemistry and energy, including Soft Matter, Chemical Engineering Journal, Advanced Materials or Fuels. The results will be presented in international conferences such as the International Liquid Crystal Conference (ILCC) or the International Conference on Materials Chemistry (MC).

Candidates should have (or expect to achieve) a UK honours degree at 2.1 or above (or equivalent) in Chemical Engineering, chemistry or physics or related areas.

Knowledge of:
Materials science, including concepts on electrochemical, mechanical and electrical characterisation.
Fundamentals on chemistry and thermodynamics.
Notions on conservation and transport phenomena (mass, energy).
Fundamentals of polymer science and technology.
Alternative energy technologies.

APPLICATION PROCEDURE:

• Apply for Degree of Doctor of Philosophy in Engineering
• State name of the lead supervisor as the Name of Proposed Supervisor
• State ‘Self-funded’ as Intended Source of Funding
• State the exact project title on the application form

When applying please ensure all required documents are attached:

• All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)
• Detailed CV

Informal inquiries can be made to Dr A Martinez-Felipe (), with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ()


Funding Notes

This project is advertised in relation to the research areas of the discipline of Chemical Engineering, materials chemistry, condensed matter physics and energy.. The successful applicant will be expected to provide the funding for Tuition fees, living expenses and maintenance. Details of the cost of study can be found by visiting View Website. THERE IS NO FUNDING ATTACHED TO THIS PROJECT.

References


[1] Z. Sharaf, F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renew. Sustain. Energy Rev., 2014, 32, 810–853.

[2] Y. Wang, KS. Chen, J. Mishler, SC. Cho, XC. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research”, Appl. Energy, 2011, 88, 981–1007.

[3] ME. Schuster, WH. Meyer “Anhydrous proton-conducting polymers” Annu. Rev. Mater. Res. 2003, 33, 233–261.

[4] A. Martínez-Felipe, “Liquid crystal polymers and ionomers for membrane applications”, Liq. Cryst., 2011, 38, 1607–1626.

[5] L. Vanti, S. Mohd-Alauddin, D. Zaton, NFK. Aripin, M. Giacinti-Baschetti, CT. Imrie, A. Ribes-Greus, A. Martinez-Felipe, “Ionically conducting and photoresponsive liquid crystalline terpolymers: Towards multifunctional polymer electrolytes”, Eur. Polym. J. 2018, 109, 124-132.


Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to Aberdeen University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.