Looking to list your PhD opportunities? Log in here.
About the Project
Emerging pollutants have been linked to adverse effects in humans and wildlife, such species e.g. metaldehyde as a persistent pesticide, as well as pentabromobiphenylether, 4-nonylphenol, C10-C13 chloroalkanes and di(2-ethylhexyl)phthalate, which are listed as priority hazardous substances by the EU (refs: EC Water Directive 2000/60/EC and the final EU decision No. 2455/2001/EC). Environmental levels continue to increase but previous research on these emergent pollutants is limited; however, as they are beginning to increase in prevalence, and their biological impacts are realised, new methods are required to effect their removal. Building upon current research within the Fletcher group this project proposes the development of novel sorbent materials for the removal of persistent organic species, identified as emergent pollutants, from water process streams, including groundwater supplies.
The group has recently developed a solid bed system for the removal of metaldehyde from water using cost-effective solid sorbents [1] and methods to address rising levels of endocrine disruptors in water streams [2-3]; this project will build on this solid base to address the issue of key emerging pollutants.
All Strathclyde PhD students undertake the Strathclyde Researcher Development programme (PGCert), which provides a framework for skills and knowledge development, with the award of the separate qualification in conjunction with the PhD. Additionally, all PGR students are automatically enrolled in the Strathclyde Doctoral School, providing opportunities for students to network and intensifying their research dissemination.
Information about the host department can be found by visiting:
http://www.strath.ac.uk/engineering/chemicalprocessengineering
http://www.strath.ac.uk/courses/research/chemicalprocessengineering/
Funding Notes
Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.
References
[2] Tasca, A.L., Ghajeri, F., Fletcher, A.J. Novel hydrophilic and hydrophobic amorphous silica: characterization and adsorption of aqueous phase organic compounds. Adsorption Science & Technology. 2017; 1-21.
[3] Tasca, A.L., Fletcher, A. State of the art of the environmental behaviour and removal techniques of the endocrine disruptor 3,4-dichloroaniline, Journal of Environmental Science and Health Part A. 2017.
Email Now
Why not add a message here
The information you submit to University of Strathclyde will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
New NMR methods for complex mixture analysis
The University of Manchester
PhD position in Catalysis: New Catalytic Methods for the Synthesis & Recycling of Renewable Plastics
University of St Andrews
New NMR methods for complex structural studies
The University of Manchester