or
Looking to list your PhD opportunities? Log in here.
X in the loop (XiL) methods are an approach of system simulation whereby part of the system is physical hardware, operating on a test bench and the other part is a simulation running on a computer. These configurations are increasingly popular in automotive development because they allow for significant savings in time and money by reducing the need to build full prototypes. The challenge is that there are currently no well-established processes that can be used to correctly prepare the hardware, models and the physical/virtual interface in a way that is not as laborious as creating a full prototype.
Linking hardware and models through a dedicated interface raises questions around all three elements. For the model, what level of accuracy is required, which aspects of reality need to be represented, can such a model be easily (and automatically) created from a broader model? How can accuracy be retained whilst ensuring real time calculation capabilities? For the interface, what delays, lags and uncertainties are introduced through sensors and actuators? How much of the interface needs to be modelled to compensate for its inherent dynamics? Can a generic interface system be create to minimise the amount of integration engineering required?
For the hardware, what level of accuracy is required in applying the boundary conditions to ensure a meaningful result, how can the test instil confidence in the engineering owner that the results are representative of the full system?
This PhD will cover all three elements of the XiL simulation system, as well as seeking to outline a process that can be applied within a large organisation to ensure models, hardware and interfaces are fit for purpose and deliver meaningful data. The vision being that this thesis will create new tools for the design and implementation of XiL configurations, embracing HW selection, modelling and control logic that sits in between the hardware under test and the system model.
This project is offered as part of the Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT). AAPS CDT is supporting the future leaders of mobility. Bringing together industry, policymakers, academics and researchers to pioneer and shape the transition to clean, sustainable mobility for all.
Prospective students for this project will be applying for the CDT programme which integrates deep research with a unique skills and training programme to give you comprehensive training and detailed knowledge in your chosen specific subject area alongside colleagues working across a broad spectrum of challenges facing the industry.
The AAPS community is both stretching and supportive, encouraging our students to explore their research in a challenging and highly collaborative way. You will be able to work with peers from a diverse background, academics with real world experience and a broad spectrum of industry partners.
As part of our AAPS community you will benefit from our training activities such mentoring future cohorts and participation in centre activities such as masterclasses, research seminars, research incubators and guest lectures. There are also opportunities to undertake industrial placements and academic secondments.
All new students joining the CDT will be assigned student mentor and a minimum of 2 academic supervisors at the point of starting their PhD.
Funding is available for 3.5-years (full time equivalent) for Home students.
See our website to apply and find more details about our unique training programme (aaps-cdt.ac.uk)
AAPS CDT studentships are available on a competition basis for UK students for up to 3.5 years. Funding will cover UK tuition fees as well as providing maintenance at the UKRI doctoral stipend rate (£19,239 per annum for 2024/25 rate) and a training support fee of £1,000 per annum. The successful candidate will be required to start before April 2025.
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Bath will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Bath, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Cleaner coal technology - Developing new predictive tools for improving the combustion processes for coal/biomass fuels
University of Sheffield
Particle accelerator simulations for new particle physics experiments
Royal Holloway, University of London
Simulation with Humans in the Loop of an Autonomous Unmanned Aerial Vehicle (UAV) for Emergency Relief [RoboStar]
University of York