Coventry University Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Cardiff University Featured PhD Programmes

Next generation on-chip photonic quantum simulators

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr Anthony Laing
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (UK Students Only)
    Competition Funded PhD Project (UK Students Only)

Project Description

The prospect of quantum machines outperforming conventional computers can provide ground-breaking capabilities in many fields. The simulation of quantum systems relevant for chemical, biological and industrial purposes, such as molecular reactions, is one of the most promising applications where quantum hardware has the potential to provide an advantage. Very recently, a link between the quantum properties and dynamics of molecules and the behaviour of photons (single particles of light) evolving in interferometric networks has been developed [1,2], opening the possibility for efficient quantum chemistry simulations based on boson sampling. The implementation of such simulations for practically relevant problems requires photonic hardware able to generate, control, and process quantum states of light on a large scale. Integrated quantum photonics, where stable and reconfigurable optical circuits embedding hundreds of optical components [3] and large photonic states [4] can be integrated on millimetre-scale chips, is the ideal platform to achieve that. These capabilities set integrated photonics on route to show a quantum advantage over classical methods for quantum chemistry simulations.

In this PhD project, the candidate will work on mapping and solving quantum simulation problems relevant to molecular dynamics and electronic structure on integrated quantum photonic devices. The project will be performed within the Quantum Engineering Technology Labs, which saw the first realisations of photonic quantum chips and has a primary role worldwide in the field. Working closely with other researchers in the group, the candidate will develop a strong background in photonic quantum information processing, quantum simulation, integrated optics, and design of photonic circuits. During the project, the candidate will have the possibility to work both on the theoretical aspects of mapping molecular systems into photons, and experimentally implementing the quantum simulation on a large scale photonic device. The candidate should have an initial background in quantum optics and know at least one standard scientific programming language (Python, C++, MATLAB, Mathematica).

In the first year, the student will deepen their understanding of quantum simulation and their ability to work in a state-of-the-art quantum photonic laboratory. The program of work will start by expanding the applicability of recently developed techniques [1, 2] to problems of general relevance such as the study of molecular dynamics well beyond the harmonic approximation and design quantum photonic devices and experiments for quantum simulation. The theoretical work will be conducted in collaboration with more senior students, postdocs and external collaborators expert in quantum chemistry. The chip designs will be submitted to commercial fabrication facilities for realisation.

In the second year, upon receiving the devices designed during the first year, the experimental work will become more prominent, requiring the testing and characterisation of these devices, followed by proof of principle demonstrations of more complex molecular dynamics. These demonstrations will include Boson sampling experiments with chips integrating fundamental components, such as quantum states of light sources, filters and interferometric networks, using off-chip superconductive nanowires detectors. These quantum simulators will be then employed in practical applications such as the study of dissociation pathways and chemical reaction optimisation.

In the last year, the student will focus on completing the experiments and optimising performances in order to increase the number of photons and then the complexity of the accessible simulations. The final part of their PhD will be devoted to the writing of journal articles and their thesis.

How to Apply

Please make an online application for this project at Please select Physics PhD on the Programme Choice page. You will be prompted to enter details of this specific project in the ‘Research Details’ section of the form.

Anticipated start date: September 2019

Candidate Requirements

A first degree in physics or a related subject, normally at a level equivalent to at least UK upper second-class honours, or a relevant postgraduate master's qualification.

See international equivalent qualifications on the International Office website.

Funding Notes

Funding UK/EU: UK and EU students who meet the eligibility requirements will be considered for an EPSRC DTP studentship. Funding will cover UK/EU tuition fees, maintenance at the UKRI Doctoral Stipend rate (£14,777 per annum, 2018/19 rate) and a training support fee of £1,000 per annum for a period up to 3.5 years.

Eligibility includes, but is not limited to, being a UK or EU national who was resident in the UK for 3 years prior to the start of the project.

Funding overseas: Overseas students are also welcome to apply for a limited number of School of Physics studentships. These will be fully funded studentships to outstanding overseas candidates.

Self-funded: We welcome all-year-round applications from self-funded students and students seeking their own funding from external sources.


[1] Sparrow et al., Simulating the vibrational quantum dynamics of molecules using photonics, Nature 557, 660 (2018)
[2] Huh et al., Boson sampling for molecular vibronic spectra, Nature Photonics 9, 615 (2015)
[3] Wang et al., Multidimensional quantum entanglement with large-scale integrated optics, Science 360, 285 (2018)
[4] Paesani et al., Generation and sampling of quantum states of light in a silicon chip, arXiv:1812.03158 (2018)

FindAPhD. Copyright 2005-2019
All rights reserved.