or
Looking to list your PhD opportunities? Log in here.
This PhD will comprise low order fluid dynamic, heat transfer and thermodynamic modelling of hydrogen fuel cell propulsion with focus on the thermal management system, in particular the radiator that is required for rejection of heat to atmosphere in liquid cooled systems. This research area is topical as high-powered fuel cell stacks (which would be needed in aircraft) that are cooled directly by air would suffer from thermal gradients that lead to unwanted increases in degradation and an associated reduction in voltage (and thereby performance). It follows that liquid cooled systems are likely to feature in future hydrogen fuel cell aircraft propulsion systems. Jet engines – which are the current state-of-the-art aircraft propulsion system and have been for >50 years – reject heat directly to atmosphere via their exhaust stream. Large scale radiators for propulsion system thermal management have therefore not featured in regional passenger aircraft design and so research into low drag and lightweight architectures for air-coolant heat exchange in this context has not been required and is thus lacking. However, with liquid cooled fuel cells for aircraft propulsion becoming an increasingly real prospect, there is an urgent need to develop understanding in this field.
Additional funding has been applied for that, if granted, would also allow the proposed student to design and build a test rig to enable a high-fidelity study of thermal and aerodynamic performance of fuel cell stacks and their radiators. This experimental work would support the validation of the low-order modelling work described above.
The proposed student will overlap for ~18 months with another PhD student who is currently working on a related topic. This current PhD student will offer support to the proposed student in getting up to speed with the fundamental understanding of fuel cells and the associated system architectures, the low order modelling techniques adopted so far, and help with identifying future areas for research in the PhD.
This project is offered as part of the Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT). AAPS CDT is supporting the future leaders of mobility. Bringing together industry, policymakers, academics and researchers to pioneer and shape the transition to clean, sustainable mobility for all.
Prospective students for this project will be applying for the CDT programme which integrates deep research with a unique skills and training programme to give you comprehensive training and detailed knowledge in your chosen specific subject area alongside colleagues working across a broad spectrum of challenges facing the industry.
The AAPS community is both stretching and supportive, encouraging our students to explore their research in a challenging and highly collaborative way. You will be able to work with peers from a diverse background, academics with real world experience and a broad spectrum of industry partners.
As part of our AAPS community you will benefit from our training activities such mentoring future cohorts and participation in centre activities such as masterclasses, research seminars, research incubators and guest lectures. There are also opportunities to undertake industrial placements and academic secondments.
All new students joining the CDT will be assigned student mentor and a minimum of 2 academic supervisors at the point of starting their PhD.
Funding is available for 3.5-years (full time equivalent) for Home students.
See our website to apply and find more details about our unique training programme (aaps-cdt.ac.uk)
AAPS CDT studentships are available on a competition basis for UK students for up to 3.5 years. Funding will cover UK tuition fees as well as providing maintenance at the UKRI doctoral stipend rate (£19,239 per annum for 2024/25 rate) and a training support fee of £1,000 per annum. The successful candidate will be required to start before April 2025.
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Bath will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Bath, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Microstructural and surface integrity in machining of specialist composite materials for next generation aero-engine applications - (ENG 1317X2)
University of Nottingham
Next generation CCS technology for combined cycle gas turbine system
University of Sheffield