Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Imperial College London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Cardiff University Featured PhD Programmes

NIR Light-triggered delivery of viral vectors for gene therapies

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr S Jones
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

About This PhD Project

Project Description

This project looks to develop a platform technology that utilises external stimuli, such as light for the triggered polymer un-coating of viral vectors for in-vivo targeted delivery. We will use the Truetype AAV serotype vector, with strong neurotropism to deliver to the brain. We will utilise NIR light to cause un-coating of polymer coated viral vectors. By coating viral vectors with polymers via a photo-responsive linkage it will be possible to target the un-coating in-vivo using light. In this way, polymer coating can allow for a decrease in immune responses, accumulation and lead to increased circulation times, whilst being easily removed at the target site for controlled delivery of the viral vector. This could revolutionise the way in which we treat damaged tissue in-vivo by, for example, allowing for targeted modifications that lead to regeneration of damaged cardiac tissue, neurons, or muscle cells in-situ.

Applications of gene therapies have become commonplace. Typically viral vectors are used ex-vivo for this genetic modification, on account of their excellent nuclear transfer efficiencies, broad tissue tropism and low pathogenicity. Viral vectors have struggled to find use in in-vivo applications as they have been shown to illicit an immune response and are typically sequestered in the liver. Polymer coating can be used to overcome both of these problems whilst also improving circulation times. However, polymer coating completely inhibits the ability of the viral vectors to infect. If it existed, a simple method to remove this polymer coat at the intended in-vivo site would significantly improve in-vivo gene therapies. For example, it would be possible to repair damaged neurons, cardiac tissue or muscles in-situ. This project looks to develop a platform technology that utilises light-cleavable linkages between viral vectors and polymers to allow for NIR light-triggered un-coating of the polymer shell. Once developed, this platform technology can then be utilised with a wide range of viral vectors for the repair of a wide range of cells, tissues and/or organs.

Due to the multidisciplinary nature of this project, students from a variety of backgrounds are welcomed. The successful candidate will have experience with polymer synthesis and characterisation and/or experience of working with viral vectors. Specifically experience of functionalization of viral capsids/envelopes will be advantageous but not critical. You will be a trustworthy, conscientious, independent experimental scientist who is able to work as part of a larger team.

FindAPhD. Copyright 2005-2019
All rights reserved.