Norwich Research Park Featured PhD Programmes
IST Austria Featured PhD Programmes
University College London Featured PhD Programmes

Novel satellite and modelling studies to assess wildfire emission impacts on air quality and climate - SENSE CDT

   School of Earth & Environment

Leeds United Kingdom Climate Science Data Analysis Ecotoxicology Environmental Chemistry Geography Remote Sensing

About the Project

Background and Motivation:

Over recent years, we have become accustomed to hearing media stories around the world about large-scale wildfires destroying homes, ecosystems and degrading air quality (e.g. the 2019/2020 Australian wildfires; Pope et al., (2021)). With current and future climate and land-use change, it is expected that these wildfires will only become more intense and widespread. These fires, as well as emitting smoke and ash, emit large quantities of air pollutants such as nitrogen oxides (NOx), carbon monoxide (CO) and aerosols. The aim of this project is to address the knowledge gap on the impact of wildfire emissions on primary and secondary air pollutants (e.g. tropospheric ozone (O3)) and reservoir species (key for transporting air pollutants to pristine regions) and their consequences for air quality and climate.

Aims and Objectives:

Satellite records of key trace gases, in combination with state-of-the-art chemistry-climate models, offer the exciting opportunity to study the impact of wildfire emissions on air quality and climate. Our project objectives are: 1) to assess the inter-annual variability of emissions and atmospheric composition over major wildfire regions; 2) to investigate the impact of wildfire emissions on secondary pollutants in downwind remote regions; and 3) to quantify the impact of wildfire emissions on climate (e.g. influence on radiative forcing).


A wealth of satellite measurements, using a range of remote sensing techniques and spectral information (e.g. UV, visible and IR wavelengths), enable us to monitor a suite of wildfire properties (e.g. burned area and fire radiative power) and key air pollutants (e.g. tropospheric columns or profiles). Here, we propose to use long-term NASA/ESA records of nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) and datasets generated by the UK National Centre for Earth Observation (NCEO) such as peroxyacetyl nitrate (PAN) from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and CO (and a swath of hydrocarbons) from the Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-track Infrared Sounder (CrIS).

The UK’s Earth System Model (UKESM) couples together different model components of the Earth system (e.g. the atmosphere, oceans, land surface etc) and was developed by the UK Natural Environment Research Council (NERC) and the Met Office. A key novel component of UKESM is the INFERNO model (Teixeira et al., 2021) which simulates fire properties and pollutant emissions. Here, we will use the model and satellite data to explore the interaction of different pollutants and their secondary formation. Targeted model sensitivity experiments can help determine the impact of wildfire emissions on air quality (e.g. long-range transport of reservoir species promoting a degradation of air quality in background regions), atmospheric chemical budgets and climate. Depending on the student’s interest, we can also assess the model sensitivity to a more complex chemical scheme (Archer-Nicholls et al., 2021). This project will be supported by the Met Office (i.e. potential CASE partner).

About SENSE:

This PhD is part of the NERC and UK Space Agency funded Centre for Doctoral Training "SENSE": the Centre for Satellite Data in Environmental Science. SENSE will train 50 PhD students to tackle cross-disciplinary environmental problems by applying the latest data science techniques to satellite data. All our students will receive extensive training on satellite data and AI/Machine Learning, as well as attending a field course on drones, and residential courses hosted by the Satellite Applications Catapult (Harwell), and ESA (Rome). All students will experience extensive training on professional skills, including spending 3 months on an industry placement. See

More information about this project can be found at:

Funding Notes

This 3 year 9 month long NERC SENSE CDT award will provide tuition fees (£4,500 for 2021/22), tax-free stipend at the UK research council rate (£15,609 for 2021/22), and a research training and support grant to support national and international conference travel. View Website


Archer-Nicholls et al., (2021), JAMES, doi: 10.1029/2020MS002420
Pope et al., (2021), JGR: Atmospheres, doi: 10.1029/2021JD034892
Teixeira et al., (2021), GMD, doi: 10.5194/gmd-2020-298.

Email Now

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs