University of Leeds Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Glasgow Featured PhD Programmes
University of Sheffield Featured PhD Programmes

Nucleoside Phosphorylation in Flow: A Physical Organic Approach


Project Description

This programme will offer training in synthetic and flow chemistry applied to nucleosides, alongside experience of kinetics and associated analytical techniques.

BACKGROUND AND OPPORTUNITY
Synthetic approaches towards nucleoside phosphates are cumbersome, with users relying heavily on methods established 25-50 years ago. Critically, the field lacks quantitative comparative data and is burdened with laborious synthetic methods that sequester systematic method development and innovation. Furthermore, there has been a remarkable lack of adoption of flow-based technologies, which offer excellent reagent and reaction control, with the possibility of direct, in-line reaction analyses.

PROGRAMME AIMS

Gain Quantitative Reactivity Data

The field of nucleoside phosphorylation is marked by qualitative descriptions of the relative electrophilicities of P-reagents and nucleophilicities of sugar-OH groups. Quantitative data will facilitate informed reagent choices for selective phosphorylations that avoid wasteful protecting group strategies.

Explore Flow Phosphorylation

Remarkably, beyond the well-established use of gene-machines to prepare CPG-supported oligos with (poly)phosphorylated termini, there is very limited enquiry into the application of flow technologies to phosphorylation in solution. Flow technologies offer excellent reagent mixing, and consistent control of reaction temperatures and solvent moisture content. Furthermore, automation alongside in-line analysis, will offer the opportunity to systematically explore the reactivities of existing and new reagents in a consistent, higher throughput manner than has previously been the case.

New Reagents and Strategies Required

Recent innovations, such as the development of the moisture-tolerant phosphoramidite strategy presented by Jessen and co-workers, illustrate that there is significant opportunity to develop new reagents for nucleoside phosphorylations. Our approaches will facilitate the design and exhaustive testing of potential new reagents, with flow control allowing more reactive reagents to be used without protecting groups.

Applicants should have (or expect to obtain) at least UK 2.i honours masters level degree in Chemistry. The position is available from October 2019, and is funded for 39 months. Due to funding restrictions, the position is only open to applicants from the UK.

Interested applicants should contact Dr David Hodgson () with a covering letter and CV, including the names of two suitable referees (academic or placement/project supervisors). Informal enquiries in advance of a formal application are very welcome.

Early applications before the 31 May 2019 at the latest are strongly encouraged. The position is likely to be filled if a suitable candidate is identified, and funding may not be available after this date.

How good is research at Durham University in Chemistry?

FTE Category A staff submitted: 40.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.