or
Looking to list your PhD opportunities? Log in here.
The RAS family of small GTPases act as signalling hubs regulating cell proliferation and differentiation. The physiological importance of RAS signalling is evident as about 25% of all human cancers harbour mutations in ras genes, where kras is most frequently mutated (about 18%) (COSMIC, v94). However, there is no anti-Ras inhibitor available except the one that targets G12C oncogenic mutation through the thiol group of the cysteine 12. As G12C mutation contributes to just about 10% of kras oncogenic mutations, it is vital to develop effective inhibitors against other oncogenic Ras variants. Towards this goal, we need to understand the mode of action of oncogenic RAS molecules.
The way Ras activates downstream effectors is through direct protein-protein interactions. 56 human proteins are found to have a domain termed either Ras Binding Domain (RBD) or Ras Association domain (RA), that features a ubiquitin-like ββαββαβ fold. Some of them are experimentally proven to act as Ras effectors. Representative examples include RAF kinases that prime ERK pathway activation, PI3 Kinase that leads to Akt activation and RalGEFs that act as a GDP-GTP exchange factor (GEF) for small GTPases, RalA and RalB.
Although the essentiality of RAS-effector interactions in the oncogenic RAS signalling is well-recognised, the dynamic nature of these interactions has been elusive.
We will address these questions in the PhD project by combining various techniques, including single-molecule analysis using optical microscopy, structural biology (X-ray crystallography, NMR and cryo-electron microscopy), biochemistry (protein purification, biolayer interferometry and surface plasmon resonance) and live-cell imaging of human culture cells where genes encoding relevant signalling molecules are to be edited by CRISPR-Cas9 technology. Successful delivery of the project will bring a novel concept of RAS signalling and help design inhibitors targeting RAS signalling.
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Leicester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Leicester, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Obtaining insights into how a signalling hub protein Ras activates multiple effectors
University of Leicester
IMAGE-D: Integrated Multimodal Analysis for Gaining Enhanced Understanding and Characterization of Dementia
University of Cambridge
Quantum-Integrated Genomic Models for the Advancement in Early Detection and Understanding of Neurodevelopmental Disorders
Edinburgh Napier University