Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  On-board Integrated Chargers and Battery Management Systems for Electrical Vehicles (EVs)


   School of Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr A ALIAKBAR JAMSHIDI FAR, Dr S S Aphale  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

With the increasing population and environmental constraints on the conventional transportation system, alternative cleaner and sustainable transportation systems are becoming very demanding. Electric vehicle (EV) is one the promising alternative for personal and public transportation applications. Currently, EVs face challenges such as safety, reliability, cost and efficiency. To meet fuel economy and environmental standards, the EVs must be highly efficient with reliable and compact traction systems with cutting edge power converter topologies and digital controller technologies.

Battery technology, lifetime, charging time, safety, and cost are the major concerns for widespread use of EVs than the conventional fossil fuel vehicles. The performance and lifetime of battery modules not only depends on design, manufacturing process and type of the batteries but also depends on their charging and discharging profile. Therefore, battery chargers play a vital role in the commercialization of EVs.

The battery chargers are classified as on-board and off-board (standalone) chargers. The on-board charger is placed inside the vehicle which provides flexibility to charge from the ac mains and does not need any expensive infrastructure. However, these chargers are limited to low power level, capable of slow charging, and have negative impact on the vehicle’s weight.

One solution is to design high power on-board chargers without increasing the weight and cost of the system by re-utilizing the existing electric traction motor and power electronics components for the charging.

Modular multilevel converter (MMC) is a potential candidate to be used in integrated drive and battery charger system. It is very popular converter in high voltage and medium voltage applications and can be also used as a battery management system by replacing the SM capacitor with battery cells.

This PhD project includes:
- Literature survey on different types of battery chargers for EVs especially the integrated charger and battery management systems
- Determine the performance indices (such as cost, size, lifetime, reliability and complexity) for the integrated charger and battery management systems
- Design of the integrated charger and battery management systems based on MMC technology (Electrical and Control)
- Modelling and simulation of the designed system

Candidates should have (or expect to achieve) a UK honours degree at 2.1 or above (or equivalent) in Electrical Engineering or Control Engineering.

Knowledge of electrical vehicles, battery and AC/DC converters.

Ability to do mathematical analysis and modelling in simulation tools like MATLAB/Simulink, PSCAD, etc.

APPLICATION PROCEDURE:

• Apply for Degree of Doctor of Philosophy in Engineering
• State name of the lead supervisor as the Name of Proposed Supervisor
• State ‘Self-funded’ as Intended Source of Funding
• State the exact project title on the application form

When applying please ensure all required documents are attached:

• All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)
• Detailed CV

Informal inquiries can be made to Dr A Jamshidi Far ([Email Address Removed]), with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ([Email Address Removed])

It is possible to undertake this project by distance learning. Interested parties should contact Dr Jamshidi Far to discuss this.

Funding Notes

This project is advertised in relation to the research areas of the discipline of Energy Transition. The successful applicant will be expected to provide the funding for Tuition fees, living expenses and maintenance. Details of the cost of study can be found by visiting www.abdn.ac.uk. THERE IS NO FUNDING ATTACHED TO THIS PROJECT.

Where will I study?