Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Oxidic Nanomaterials for High Density Storage in Li-ion Batteries


   Faculty of Life Sciences

  ,  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

The oxides of a number of materials are very appealing candidates as substitutes for conventional anodes in lithium-ion batteries because of their high theoretical capacity, high electric conductivity low potential of lithium ion intercalation, as well as superior electron mobilities, with one such material, SnO2 being particularly appealing. For example nanostructured SnO2 materials have attracted wide interest due to their potential for use in a wide variety of applications from gas sensors and photocatalysts to transparent electrodes for energy conversion and energy storage devices.

The wide applicability of nanostructured materials in general arises from their quantum size effect, large surface area and high surface activity. Despite significant progress already made using standard synthetic methods, many potentially interesting oxidic materials are still far from commercialisation. Therefore, it is imperative that new oxidic anode materials with novel architectures are investigated to further the development of commercially viable electrodes with high energy and power densities. Self-assembled hybrid nanoparticles can satisfy many requirements required for energy storage, making them interesting anode materials.

Project aims

  • Develop a general approach for the synthesis of a number of crystalline oxide materials of interest for lithium ion storage (SnO2, LiCoO2 and LiMn2O4)
  • Develop the technology to attach multilayers of these materials to conducting substrates
  • Characterise the materials as monolayers
  • Multilayers within a device architecture
  • Determine the potential of these nanomaterials for their charge storage capacity

How to apply

Formal applications can be submitted via the University of Bradford web site. Applicants should register an account, select 'Full-time PhD in Chemistry & Forensic Sciences' as the course, and include the project title on the Research Proposal section.

Informal enquiries are also welcome.

About the University of Bradford

Bradford is a research-active University supporting the highest-quality research. We excel in applying our research to benefit our stakeholders by working with employers and organisations world-wide across the private, public, voluntary and community sectors and actively encourage and support our postgraduate researchers to engage in research and business development activities.

Faculty of Life Sciences

The faculty comprises a mixture of academic divisions, research centres and outreach facilities. We provide high-quality teaching with a professional focus and engage in cutting-edge research – which we seek to apply through our extensive links with industry and business. We also offer a wide range of postgraduate taught and research courses.

Many of our academics are active researchers and international research experts.

Our interdisciplinary research themes are focus on:

  • Computational and Data-driven Science
  • Interface of Chemistry Biology and Materials
  • Health, Society, People and Place
  • The Life Course

Our research centres include:

  • Centre for Pharmaceutical Engineering Science
  • Digital Health Enterprise Zone
  • Institute of Cancer Therapeutics
  • Wolfson Centre for Applied Research

University investment in research support services, equipment and infrastructure provides an excellent research environment and broad portfolio of developmental opportunities. 

Positive Action Statement

At the University of Bradford our vision is a world of inclusion and equality of opportunity, where people want to, and can, make a difference. We place equality and diversity, inclusion, and a commitment to social mobility at the centre of our mission and ethos. In working to make a difference we are committed to addressing systemic inequality and disadvantages experienced by Black, Asian and Minority Ethnic staff and students.

Under sections 158-159 of the Equality Act 2010, positive action can be taken where protected group members are under-represented. At Bradford, our data show that people from Black, Asian, and Minority Ethnic groups who are UK nationals are significantly under-represented at the postgraduate researcher level. 

These are lawful measures designed to address systemic and structural issues which result in the under-representation of Black, Asian, and Minority Ethnic students in PGR studies.

Chemistry (6) Engineering (12) Materials Science (24)

Funding Notes

This is a self-funded PhD project; applicants will be expected to pay their own fees or have a suitable source of third-party funding. A bench fee may also apply to this project, in addition to the tuition fees. UK students may be able to apply for a Doctoral Loan from Student Finance for financial support.

Register your interest for this project



Where will I study?