University of Sheffield Featured PhD Programmes
University of Exeter Featured PhD Programmes
University of Glasgow Featured PhD Programmes
Heriot-Watt University Featured PhD Programmes
Loughborough University Featured PhD Programmes

PhD in Chemistry - Meta-Smart: Merging de novo designed biomolecules with plasmonic metamaterials for new technologies

  • Full or part time
  • Application Deadline
    Wednesday, April 01, 2020
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

We live in a world in which individuals have unprecedented access to data on their environment, health and wellbeing. This ranges from information provided by fitness bands, to the energy smart meters that are found in every home. However, our current capabilities pale when compared to the sensory abilities found in Nature. For, instance no technology has been developed that can rival the ability of a spaniel for sniffing out contraband. To replicate Nature’s capabilities to detect a vast array of stimuli with ultra-sensitivity is still in the realms of science fiction. In natural sensory systems, typically a change in molecular structure (in a receptor molecule) induced by a stimulus, is detected and propagated by a complex biological architecture. While chemists can mimic the function of receptor molecules, it is the functionality of complex biological component to convert and propagate this structural change into a useable signal that is a challenge to mimic. We propose a new concept Meta-Smart, where the initial molecular sensing event is retained, but the functionality of the biological architecture is replicated by an engineered nanofabricated structure (metamaterial). In effect the metamaterial amplifies the chemical signal, converting it into a readily detectible response. Taking inspiration from Nature, the property of chirality will be utilised to effectively unify biomacromolecular and metamaterial properties. To demonstrate the transformative potential of the Meta-Smart concept we will build bio-inspired chemo- and photosensing devices.

It is the University of Glasgow’s mission to foster an inclusive climate, which ensures equality in our working, learning, research and teaching environment.

We strongly endorse the principles of Athena SWAN, including a supportive and flexible working environment, with commitment from all levels of the organisation in promoting gender equality.

As an Athena SWAN Bronze Award holder, the School of Chemistry has equality, diversity and inclusion at its heart, and actively supports applications from all sections of society.

More details of the School’s Athena SWAN activities can be found here:
https://www.gla.ac.uk/schools/chemistry/abouttheschool/athenaswan/

How to Apply: Please refer to the following website for details on how to apply:
http://www.gla.ac.uk/research/opportunities/howtoapplyforaresearchdegree/.

Please direct all enquiries to:

Funding Notes

Funding is available to cover tuition fees for UK / EU 3 applicants for 3.5 years, as well as paying a stipend at the Research Council rate (estimated £15,245 for Session 2020-2021).

Eligibility: A First Class or Upper Second class degree in Physics, Chemical Physics or Chemistry

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.